Loading…
phosphatidylinositol-3 kinase/Akt pathway mediates VEGF's neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia
Based on its trophic influence on neurons and vascular cells, vascular endothelial growth factor (VEGF) is a promising candidate for stroke treatment. VEGF's survival-promoting effects are purchased at the expense of an increased blood brain barrier permeability, which potentially compromises t...
Saved in:
Published in: | The FASEB journal 2006-06, Vol.20 (8), p.1185-1187 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on its trophic influence on neurons and vascular cells, vascular endothelial growth factor (VEGF) is a promising candidate for stroke treatment. VEGF's survival-promoting effects are purchased at the expense of an increased blood brain barrier permeability, which potentially compromises tissue survival. The mechanisms via which VEGF protects the brain against ischemia remained unknown. We examined signaling pathways underlying VEGF's neuroprotective activity in our transgenic mouse line, which expresses human VEGF₁₆₅ under a neuron-specific enolase (NSE) promoter. We show that VEGF receptor-2 (Flk-1) is expressed on ischemic neurons and astrocytes and is activated by VEGF. Following 90-min episodes of middle cerebral artery occlusion, VEGF increased phosphorylated (but not total) Akt and ERK-1/-2 and reduced phosphorylated mitogen activated protein kinase/p38 and c-Jun NH2-terminal kinase (JNK)-1/-2 levels, at the same time decreasing inducible NO synthase expression in ischemic neurons. Inhibition of Akt with Wortmannin reversed VEGF's neuroprotective properties, diminished brain swelling, and restored the vascular permeability induced by VEGF to below levels in WT animals. The aggravation of brain injury by Wortmannin was associated with the restitution of p38, but not of JNK-1/-2, ERK-1/-2, or inducible NOS (iNOS). Our data demonstrate that VEGF mediates both neuroprotection and blood brain barrier permeability via the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Based on our observation that VEGF neuroprotection and vascular leakage depend on PI3K/Akt, which is putatively regulated by VEGF receptor-2, we predict that it may not easily be possible to make use of VEGF's neuroprotective function without accepting its unfavorable consequence, the increased vascular permeability.--Kilic, E., Kilic, Ü., Wang, Y., Bassetti, C. L., Marti, H. H., Hermann, D. M. The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF's neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. |
---|---|
ISSN: | 0892-6638 1530-6860 |
DOI: | 10.1096/fj.05-4829fje |