Loading…
Quantitative Calcium Measurements in Subcellular Compartments of Plasmodium falciparum-infected Erythrocytes
The acidic food vacuole exerts several important functions during intraerythrocytic development of the human malarial parasite Plasmodium falciparum. Hemoglobin taken up from the host erythrocyte is degraded in the food vacuole, and the heme liberated during this process is crystallized to inert hem...
Saved in:
Published in: | The Journal of biological chemistry 2005-07, Vol.280 (30), p.27960-27969 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The acidic food vacuole exerts several important functions during intraerythrocytic development of the human malarial parasite Plasmodium falciparum. Hemoglobin taken up from the host erythrocyte is degraded in the food vacuole, and the heme liberated during this process is crystallized to inert hemozoin. Several anti-malarial drugs target food vacuolar pathways, such as hemoglobin degradation and heme crystallization. Resistance and sensitization to some antimalarials is associated with mutations in food vacuolar membrane proteins. Other studies suggest a role of the food vacuole in ion homeostasis, and release of Ca2+ from the food vacuole may mediate adopted physiological responses. To investigate whether the food vacuole is an intracellular Ca2+ store, which in turn may affect other physiological functions in which this organelle partakes, we have investigated total and exchangeable Ca2+ within the parasite's food vacuole using x-ray microanalysis and quantitative confocal live cell Ca2+ imaging. Apparent free Ca2+ concentrations of ∼90, ∼350, and ∼400 nm were found in the host erythrocyte cytosol, the parasite cytoplasm, and the food vacuole, respectively. In our efforts to determine free intracellular Ca2+ concentrations, we evaluated several Ca2+-sensitive fluorochromes in a live cell confocal setting. We found that the ratiometric Ca2+ indicator Fura-Red provides reliable determinations, whereas measurements using the frequently used Fluo-4 are compromised due to problems arising from phototoxicity, photobleaching, and the strong pH dependence of the dye. Our data suggest that the food vacuole contains only moderate amounts of Ca2+, disfavoring a role as a major intracellular Ca2+ store. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M500777200 |