Loading…
Time-Resolved Investigation of Bright Visible Wavelength Luminescence from Sulfur-Doped ZnO Nanowires and Micropowders
Sulfur-doped zinc oxide (ZnO) nanowires grown on gold-coated silicon substrates inside a horizontal tube furnace exhibit remarkably strong visible wavelength emission with a quantum efficiency of 30%, an integrated intensity 1600 times stronger than band edge ultraviolet emission, and a spectral dis...
Saved in:
Published in: | Nano letters 2006-06, Vol.6 (6), p.1126-1130 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sulfur-doped zinc oxide (ZnO) nanowires grown on gold-coated silicon substrates inside a horizontal tube furnace exhibit remarkably strong visible wavelength emission with a quantum efficiency of 30%, an integrated intensity 1600 times stronger than band edge ultraviolet emission, and a spectral distribution that closely matches the dark-adapted human eye response. By comparatively studying sulfur-doped and undoped ZnO micropowders, we clarify how sulfur doping and nanostructuring affect the visible luminescence and the underlying energy transfer mechanisms. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl060204z |