Loading…

Some of the properties of flame retardant medium density fiberboard made from rubberwood and recycled containers containing aluminum trihydroxide

The flame retardancy of medium density fiberboard (MDF) made from mixture of rubberwood fibers and recycled old corrugated containers was studied. Aluminum trihydroxide (ATH) was used as a fire retardant additive and mixed with the fibers to manufacture experimental MDF panels using wet process. Phe...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2005-11, Vol.96 (16), p.1826-1831
Main Authors: Hashim, R., How, L.S., Kumar, R.N., Sulaiman, O.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The flame retardancy of medium density fiberboard (MDF) made from mixture of rubberwood fibers and recycled old corrugated containers was studied. Aluminum trihydroxide (ATH) was used as a fire retardant additive and mixed with the fibers to manufacture experimental MDF panels using wet process. Phenol formaldehyde (PF) resin in liquid, 2% based on oven dry weight of fibers, was used along with 0%, 10%, 15% and 20% of ATH. The flame retardant test was done using the limiting oxygen index (LOI) test. The other properties investigated include internal bond strength, thickness swelling and water absorption. The results showed that ATH loading increased as the LOI of MDF increased. This demonstrated that ATH could improved the fire retardant property of MDF at sufficient loading. An increase in concentration of ATH showed an increase in the IB values of MDF made without resin. MDF panels made without resin showed a progressive increase in internal bond as the composition of recycled old corrugated containers fiber increased. Addition of resin improved internal bond strength and reduced thickness swelling, and water absorption. Thickness swelling of panel increased as the composition of recycled old corrugated containers fiber increased. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) showed that there is indication of ATH and resin filling the void space in between fibers.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2005.01.023