Loading…

Prevalence of marginally unstable periodic orbits in chaotic billiards

The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structu...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2008-01, Vol.77 (1 Pt 2), p.016205-016205, Article 016205
Main Authors: Altmann, E G, Friedrich, T, Motter, A E, Kantz, H, Richter, A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63
cites cdi_FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63
container_end_page 016205
container_issue 1 Pt 2
container_start_page 016205
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 77
creator Altmann, E G
Friedrich, T
Motter, A E
Kantz, H
Richter, A
description The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structures both exist and strongly influence the dynamics of locally perturbed billiards, which include a large class of widely studied systems. We demonstrate the impact of these structures in the quantum regime using microwave experiments in annular billiards.
doi_str_mv 10.1103/PhysRevE.77.016205
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68092433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68092433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63</originalsourceid><addsrcrecordid>eNpFkE9LAzEUxIMotla_gAfZk7et-bNJdo9SWhUKFtFzyCZvbSTdrcluod--Ka14esNjZmB-CN0TPCUEs6fVeh8_YDefSjnFRFDML9CYcI5zyqS4PGpW5UxyPkI3Mf5gzCgri2s0IiXjpKLFGC1WAXbaQ2sg65pso8O3a7X3-2xoY69rD9kWguusM1kXatfHzLWZWeuuT5_aee90sPEWXTXaR7g73wn6Wsw_Z6_58v3lbfa8zA0reJ8XuiplCbwQdVPrilEsZNkQA9gSKyqKJbEFtWkcFYJLLioCQKpksUAKK9gEPZ56t6H7HSD2auOiAe91C90QlShxmsVYMtKT0YQuxgCN2gaX1u0VwepIT_3RU1KqE70Ueji3D_UG7H_kjIsdAARKbFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68092433</pqid></control><display><type>article</type><title>Prevalence of marginally unstable periodic orbits in chaotic billiards</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Altmann, E G ; Friedrich, T ; Motter, A E ; Kantz, H ; Richter, A</creator><creatorcontrib>Altmann, E G ; Friedrich, T ; Motter, A E ; Kantz, H ; Richter, A</creatorcontrib><description>The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structures both exist and strongly influence the dynamics of locally perturbed billiards, which include a large class of widely studied systems. We demonstrate the impact of these structures in the quantum regime using microwave experiments in annular billiards.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.77.016205</identifier><identifier>PMID: 18351924</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2008-01, Vol.77 (1 Pt 2), p.016205-016205, Article 016205</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63</citedby><cites>FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18351924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Altmann, E G</creatorcontrib><creatorcontrib>Friedrich, T</creatorcontrib><creatorcontrib>Motter, A E</creatorcontrib><creatorcontrib>Kantz, H</creatorcontrib><creatorcontrib>Richter, A</creatorcontrib><title>Prevalence of marginally unstable periodic orbits in chaotic billiards</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structures both exist and strongly influence the dynamics of locally perturbed billiards, which include a large class of widely studied systems. We demonstrate the impact of these structures in the quantum regime using microwave experiments in annular billiards.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEUxIMotla_gAfZk7et-bNJdo9SWhUKFtFzyCZvbSTdrcluod--Ka14esNjZmB-CN0TPCUEs6fVeh8_YDefSjnFRFDML9CYcI5zyqS4PGpW5UxyPkI3Mf5gzCgri2s0IiXjpKLFGC1WAXbaQ2sg65pso8O3a7X3-2xoY69rD9kWguusM1kXatfHzLWZWeuuT5_aee90sPEWXTXaR7g73wn6Wsw_Z6_58v3lbfa8zA0reJ8XuiplCbwQdVPrilEsZNkQA9gSKyqKJbEFtWkcFYJLLioCQKpksUAKK9gEPZ56t6H7HSD2auOiAe91C90QlShxmsVYMtKT0YQuxgCN2gaX1u0VwepIT_3RU1KqE70Ueji3D_UG7H_kjIsdAARKbFE</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Altmann, E G</creator><creator>Friedrich, T</creator><creator>Motter, A E</creator><creator>Kantz, H</creator><creator>Richter, A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Prevalence of marginally unstable periodic orbits in chaotic billiards</title><author>Altmann, E G ; Friedrich, T ; Motter, A E ; Kantz, H ; Richter, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Altmann, E G</creatorcontrib><creatorcontrib>Friedrich, T</creatorcontrib><creatorcontrib>Motter, A E</creatorcontrib><creatorcontrib>Kantz, H</creatorcontrib><creatorcontrib>Richter, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altmann, E G</au><au>Friedrich, T</au><au>Motter, A E</au><au>Kantz, H</au><au>Richter, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prevalence of marginally unstable periodic orbits in chaotic billiards</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>77</volume><issue>1 Pt 2</issue><spage>016205</spage><epage>016205</epage><pages>016205-016205</pages><artnum>016205</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structures both exist and strongly influence the dynamics of locally perturbed billiards, which include a large class of widely studied systems. We demonstrate the impact of these structures in the quantum regime using microwave experiments in annular billiards.</abstract><cop>United States</cop><pmid>18351924</pmid><doi>10.1103/PhysRevE.77.016205</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2008-01, Vol.77 (1 Pt 2), p.016205-016205, Article 016205
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_68092433
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Prevalence of marginally unstable periodic orbits in chaotic billiards
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prevalence%20of%20marginally%20unstable%20periodic%20orbits%20in%20chaotic%20billiards&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Altmann,%20E%20G&rft.date=2008-01-01&rft.volume=77&rft.issue=1%20Pt%202&rft.spage=016205&rft.epage=016205&rft.pages=016205-016205&rft.artnum=016205&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.77.016205&rft_dat=%3Cproquest_cross%3E68092433%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68092433&rft_id=info:pmid/18351924&rfr_iscdi=true