Loading…
Prevalence of marginally unstable periodic orbits in chaotic billiards
The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structu...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2008-01, Vol.77 (1 Pt 2), p.016205-016205, Article 016205 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63 |
container_end_page | 016205 |
container_issue | 1 Pt 2 |
container_start_page | 016205 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 77 |
creator | Altmann, E G Friedrich, T Motter, A E Kantz, H Richter, A |
description | The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structures both exist and strongly influence the dynamics of locally perturbed billiards, which include a large class of widely studied systems. We demonstrate the impact of these structures in the quantum regime using microwave experiments in annular billiards. |
doi_str_mv | 10.1103/PhysRevE.77.016205 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68092433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68092433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63</originalsourceid><addsrcrecordid>eNpFkE9LAzEUxIMotla_gAfZk7et-bNJdo9SWhUKFtFzyCZvbSTdrcluod--Ka14esNjZmB-CN0TPCUEs6fVeh8_YDefSjnFRFDML9CYcI5zyqS4PGpW5UxyPkI3Mf5gzCgri2s0IiXjpKLFGC1WAXbaQ2sg65pso8O3a7X3-2xoY69rD9kWguusM1kXatfHzLWZWeuuT5_aee90sPEWXTXaR7g73wn6Wsw_Z6_58v3lbfa8zA0reJ8XuiplCbwQdVPrilEsZNkQA9gSKyqKJbEFtWkcFYJLLioCQKpksUAKK9gEPZ56t6H7HSD2auOiAe91C90QlShxmsVYMtKT0YQuxgCN2gaX1u0VwepIT_3RU1KqE70Ueji3D_UG7H_kjIsdAARKbFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68092433</pqid></control><display><type>article</type><title>Prevalence of marginally unstable periodic orbits in chaotic billiards</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Altmann, E G ; Friedrich, T ; Motter, A E ; Kantz, H ; Richter, A</creator><creatorcontrib>Altmann, E G ; Friedrich, T ; Motter, A E ; Kantz, H ; Richter, A</creatorcontrib><description>The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structures both exist and strongly influence the dynamics of locally perturbed billiards, which include a large class of widely studied systems. We demonstrate the impact of these structures in the quantum regime using microwave experiments in annular billiards.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.77.016205</identifier><identifier>PMID: 18351924</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2008-01, Vol.77 (1 Pt 2), p.016205-016205, Article 016205</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63</citedby><cites>FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18351924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Altmann, E G</creatorcontrib><creatorcontrib>Friedrich, T</creatorcontrib><creatorcontrib>Motter, A E</creatorcontrib><creatorcontrib>Kantz, H</creatorcontrib><creatorcontrib>Richter, A</creatorcontrib><title>Prevalence of marginally unstable periodic orbits in chaotic billiards</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structures both exist and strongly influence the dynamics of locally perturbed billiards, which include a large class of widely studied systems. We demonstrate the impact of these structures in the quantum regime using microwave experiments in annular billiards.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEUxIMotla_gAfZk7et-bNJdo9SWhUKFtFzyCZvbSTdrcluod--Ka14esNjZmB-CN0TPCUEs6fVeh8_YDefSjnFRFDML9CYcI5zyqS4PGpW5UxyPkI3Mf5gzCgri2s0IiXjpKLFGC1WAXbaQ2sg65pso8O3a7X3-2xoY69rD9kWguusM1kXatfHzLWZWeuuT5_aee90sPEWXTXaR7g73wn6Wsw_Z6_58v3lbfa8zA0reJ8XuiplCbwQdVPrilEsZNkQA9gSKyqKJbEFtWkcFYJLLioCQKpksUAKK9gEPZ56t6H7HSD2auOiAe91C90QlShxmsVYMtKT0YQuxgCN2gaX1u0VwepIT_3RU1KqE70Ueji3D_UG7H_kjIsdAARKbFE</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Altmann, E G</creator><creator>Friedrich, T</creator><creator>Motter, A E</creator><creator>Kantz, H</creator><creator>Richter, A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Prevalence of marginally unstable periodic orbits in chaotic billiards</title><author>Altmann, E G ; Friedrich, T ; Motter, A E ; Kantz, H ; Richter, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Altmann, E G</creatorcontrib><creatorcontrib>Friedrich, T</creatorcontrib><creatorcontrib>Motter, A E</creatorcontrib><creatorcontrib>Kantz, H</creatorcontrib><creatorcontrib>Richter, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altmann, E G</au><au>Friedrich, T</au><au>Motter, A E</au><au>Kantz, H</au><au>Richter, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prevalence of marginally unstable periodic orbits in chaotic billiards</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>77</volume><issue>1 Pt 2</issue><spage>016205</spage><epage>016205</epage><pages>016205-016205</pages><artnum>016205</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structures both exist and strongly influence the dynamics of locally perturbed billiards, which include a large class of widely studied systems. We demonstrate the impact of these structures in the quantum regime using microwave experiments in annular billiards.</abstract><cop>United States</cop><pmid>18351924</pmid><doi>10.1103/PhysRevE.77.016205</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2008-01, Vol.77 (1 Pt 2), p.016205-016205, Article 016205 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_68092433 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Prevalence of marginally unstable periodic orbits in chaotic billiards |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prevalence%20of%20marginally%20unstable%20periodic%20orbits%20in%20chaotic%20billiards&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Altmann,%20E%20G&rft.date=2008-01-01&rft.volume=77&rft.issue=1%20Pt%202&rft.spage=016205&rft.epage=016205&rft.pages=016205-016205&rft.artnum=016205&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.77.016205&rft_dat=%3Cproquest_cross%3E68092433%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-4a9878e546bfba9320678f1ce0d1d692071d42d103266575691ee198f1de14d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68092433&rft_id=info:pmid/18351924&rfr_iscdi=true |