Loading…

Description of Babesia duncani n.sp. (Apicomplexa: Babesiidae) from humans and its differentiation from other piroplasms

The morphologic, ultrastructural and genotypic characteristics of Babesia duncani n.sp. are described based on the characterization of two isolates (WA1, CA5) obtained from infected human patients in Washington and California. The intraerythrocytic stages of the parasite are morphologically indistin...

Full description

Saved in:
Bibliographic Details
Published in:International journal for parasitology 2006-06, Vol.36 (7), p.779-789
Main Authors: Conrad, Patricia A., Kjemtrup, Anne M., Carreno, Ramon A., Thomford, John, Wainwright, Katlyn, Eberhard, Mark, Quick, Rob, Telford III, Sam R., Herwaldt, Barbara L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The morphologic, ultrastructural and genotypic characteristics of Babesia duncani n.sp. are described based on the characterization of two isolates (WA1, CA5) obtained from infected human patients in Washington and California. The intraerythrocytic stages of the parasite are morphologically indistinguishable from Babesia microti, which is the most commonly identified cause of human babesiosis in the USA. Intraerythrocytic trophozoites of B. duncani n.sp. are round to oval, with some piriform, ring and ameboid forms. Division occurs by intraerythrocytic schizogony, which results in the formation of merozoites in tetrads (syn. Maltese cross or quadruplet forms). The ultrastructural features of trophozoites and merozoites are similar to those described for B. microti and Theileria spp. However, intralymphocytic schizont stages characteristic of Theileria spp. have not been observed in infected humans. In phylogenetic analyses based on sequence data for the complete18S ribosomal RNA gene, B. duncani n.sp. lies in a distinct clade that includes isolates from humans, dogs and wildlife in the western United States but separate from Babesia sensu stricto, Theileria spp. and B. microti. ITS2 sequence analysis of the B. duncani n.sp. isolates (WA1, CA5) show that they are phylogenetically indistinguishable from each other and from two other human B. duncani-type parasites (CA6, WA2 clone1) but distinct from other Babesia and Theileria species sequenced. This analysis provides robust molecular support that the B. duncani n.sp. isolates are monophyletic and the same species. The morphologic characteristics together with the phylogenetic analysis of two genetic loci support the assertion that B. duncani n.sp. is a distinct species from other known Babesia spp. for which morphologic and sequence information are available.
ISSN:0020-7519
1879-0135
DOI:10.1016/j.ijpara.2006.03.008