Loading…

Magnetic Field Switching of Nanoparticles between Orthogonal Microfluidic Channels

This paper reports on the manipulation of magnetic nanoparticles between microfluidic channels by the application of an external magnet. Two orthogonal channels were prepared using standard PDMS techniques with pressure-driven flow used to deliver the mobile phase. To study the ability to control ma...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2007-08, Vol.79 (15), p.5746-5752
Main Authors: Latham, Andrew H, Tarpara, Anand N, Williams, Mary Elizabeth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper reports on the manipulation of magnetic nanoparticles between microfluidic channels by the application of an external magnet. Two orthogonal channels were prepared using standard PDMS techniques with pressure-driven flow used to deliver the mobile phase. To study the ability to control magnetic nanoparticles within micrometer-sized channels, Fe2O3, MnFe2O4, and Au nanoparticle samples were compared. For the magnetic particles, transfer between flow streams is greatly increased by placing a permanent magnet beneath the intersection of the channels, but no change is observed for the nonmagnetic Au particles. More nanoparticles are magnetically transferred into the orthogonal channel as the solvent flow rate decreases. We demonstrate the ability to use this technique to perform multiple injections of plugs of magnetic particles by periodic application of a magnetic field.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac070520d