Loading…

Scaling of Hamiltonian walks on fractal lattices

We investigate asymptotical behavior of numbers of long Hamiltonian walks (HWs), i.e., self-avoiding random walks that visit every site of a lattice, on various fractal lattices. By applying an exact recursive technique we obtain scaling forms for open HWs on three-simplex lattice, Sierpinski gasket...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2007-07, Vol.76 (1 Pt 1), p.011107-011107, Article 011107
Main Authors: Elezović-Hadzić, Suncica, Marcetić, Dusanka, Maletić, Slobodan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c301t-d4ae60473cf68fe46b765c057b74deccc9611513ae37d95a7646e81cd4758383
cites cdi_FETCH-LOGICAL-c301t-d4ae60473cf68fe46b765c057b74deccc9611513ae37d95a7646e81cd4758383
container_end_page 011107
container_issue 1 Pt 1
container_start_page 011107
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 76
creator Elezović-Hadzić, Suncica
Marcetić, Dusanka
Maletić, Slobodan
description We investigate asymptotical behavior of numbers of long Hamiltonian walks (HWs), i.e., self-avoiding random walks that visit every site of a lattice, on various fractal lattices. By applying an exact recursive technique we obtain scaling forms for open HWs on three-simplex lattice, Sierpinski gasket, and their generalizations: Given-Mandelbrot (GM), modified Sierpinski gasket (MSG), and n -simplex fractal families. For GM, MSG and n -simplex lattices with odd values of n , the number of open HWs Z(N), for the lattice with N>>1 sites, varies as omega(N)}N(gamma). We explicitly calculate the exponent gamma for several members of GM and MSG families, as well as for n-simplices with n=3, 5, and 7. For n-simplex fractals with even n we find different scaling form: Z(N) approximately omega(N)mu(N1/d(f), where d(f) is the fractal dimension of the lattice, which also differs from the formula expected for homogeneous lattices. We discuss possible implications of our results on studies of real compact polymers.
doi_str_mv 10.1103/PhysRevE.76.011107
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68132823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68132823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-d4ae60473cf68fe46b765c057b74deccc9611513ae37d95a7646e81cd4758383</originalsourceid><addsrcrecordid>eNpFkDFPwzAUhC0EoqXwBxhQJrYEvzzbzx1R1VKkSiDobrmOAwEnKXEK6r-nVYuY7nS6u-Fj7Bp4BsDx7vl9G1_89zQjlXHYRXTChiAlT3Mkdbr3OE6RpBywixg_OMcctThnAyBFJIAPGX91NlTNW9KWydzWVejbprJN8mPDZ0zaJik763obkmD7vnI-XrKz0obor446YsvZdDmZp4unh8fJ_SJ1yKFPC2G94oLQlUqXXqgVKem4pBWJwjvnxgpAAlqPVIylJSWU1-AKQVKjxhG7Pdyuu_Zr42Nv6io6H4JtfLuJRmnAXOe4K-aHouvaGDtfmnVX1bbbGuBmj8n8YTKkzAHTbnRzfN-sal_8T45c8BfOL2Pb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68132823</pqid></control><display><type>article</type><title>Scaling of Hamiltonian walks on fractal lattices</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Elezović-Hadzić, Suncica ; Marcetić, Dusanka ; Maletić, Slobodan</creator><creatorcontrib>Elezović-Hadzić, Suncica ; Marcetić, Dusanka ; Maletić, Slobodan</creatorcontrib><description>We investigate asymptotical behavior of numbers of long Hamiltonian walks (HWs), i.e., self-avoiding random walks that visit every site of a lattice, on various fractal lattices. By applying an exact recursive technique we obtain scaling forms for open HWs on three-simplex lattice, Sierpinski gasket, and their generalizations: Given-Mandelbrot (GM), modified Sierpinski gasket (MSG), and n -simplex fractal families. For GM, MSG and n -simplex lattices with odd values of n , the number of open HWs Z(N), for the lattice with N&gt;&gt;1 sites, varies as omega(N)}N(gamma). We explicitly calculate the exponent gamma for several members of GM and MSG families, as well as for n-simplices with n=3, 5, and 7. For n-simplex fractals with even n we find different scaling form: Z(N) approximately omega(N)mu(N1/d(f), where d(f) is the fractal dimension of the lattice, which also differs from the formula expected for homogeneous lattices. We discuss possible implications of our results on studies of real compact polymers.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.76.011107</identifier><identifier>PMID: 17677410</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2007-07, Vol.76 (1 Pt 1), p.011107-011107, Article 011107</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-d4ae60473cf68fe46b765c057b74deccc9611513ae37d95a7646e81cd4758383</citedby><cites>FETCH-LOGICAL-c301t-d4ae60473cf68fe46b765c057b74deccc9611513ae37d95a7646e81cd4758383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17677410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elezović-Hadzić, Suncica</creatorcontrib><creatorcontrib>Marcetić, Dusanka</creatorcontrib><creatorcontrib>Maletić, Slobodan</creatorcontrib><title>Scaling of Hamiltonian walks on fractal lattices</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We investigate asymptotical behavior of numbers of long Hamiltonian walks (HWs), i.e., self-avoiding random walks that visit every site of a lattice, on various fractal lattices. By applying an exact recursive technique we obtain scaling forms for open HWs on three-simplex lattice, Sierpinski gasket, and their generalizations: Given-Mandelbrot (GM), modified Sierpinski gasket (MSG), and n -simplex fractal families. For GM, MSG and n -simplex lattices with odd values of n , the number of open HWs Z(N), for the lattice with N&gt;&gt;1 sites, varies as omega(N)}N(gamma). We explicitly calculate the exponent gamma for several members of GM and MSG families, as well as for n-simplices with n=3, 5, and 7. For n-simplex fractals with even n we find different scaling form: Z(N) approximately omega(N)mu(N1/d(f), where d(f) is the fractal dimension of the lattice, which also differs from the formula expected for homogeneous lattices. We discuss possible implications of our results on studies of real compact polymers.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkDFPwzAUhC0EoqXwBxhQJrYEvzzbzx1R1VKkSiDobrmOAwEnKXEK6r-nVYuY7nS6u-Fj7Bp4BsDx7vl9G1_89zQjlXHYRXTChiAlT3Mkdbr3OE6RpBywixg_OMcctThnAyBFJIAPGX91NlTNW9KWydzWVejbprJN8mPDZ0zaJik763obkmD7vnI-XrKz0obor446YsvZdDmZp4unh8fJ_SJ1yKFPC2G94oLQlUqXXqgVKem4pBWJwjvnxgpAAlqPVIylJSWU1-AKQVKjxhG7Pdyuu_Zr42Nv6io6H4JtfLuJRmnAXOe4K-aHouvaGDtfmnVX1bbbGuBmj8n8YTKkzAHTbnRzfN-sal_8T45c8BfOL2Pb</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Elezović-Hadzić, Suncica</creator><creator>Marcetić, Dusanka</creator><creator>Maletić, Slobodan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070701</creationdate><title>Scaling of Hamiltonian walks on fractal lattices</title><author>Elezović-Hadzić, Suncica ; Marcetić, Dusanka ; Maletić, Slobodan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-d4ae60473cf68fe46b765c057b74deccc9611513ae37d95a7646e81cd4758383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Elezović-Hadzić, Suncica</creatorcontrib><creatorcontrib>Marcetić, Dusanka</creatorcontrib><creatorcontrib>Maletić, Slobodan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elezović-Hadzić, Suncica</au><au>Marcetić, Dusanka</au><au>Maletić, Slobodan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling of Hamiltonian walks on fractal lattices</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>76</volume><issue>1 Pt 1</issue><spage>011107</spage><epage>011107</epage><pages>011107-011107</pages><artnum>011107</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We investigate asymptotical behavior of numbers of long Hamiltonian walks (HWs), i.e., self-avoiding random walks that visit every site of a lattice, on various fractal lattices. By applying an exact recursive technique we obtain scaling forms for open HWs on three-simplex lattice, Sierpinski gasket, and their generalizations: Given-Mandelbrot (GM), modified Sierpinski gasket (MSG), and n -simplex fractal families. For GM, MSG and n -simplex lattices with odd values of n , the number of open HWs Z(N), for the lattice with N&gt;&gt;1 sites, varies as omega(N)}N(gamma). We explicitly calculate the exponent gamma for several members of GM and MSG families, as well as for n-simplices with n=3, 5, and 7. For n-simplex fractals with even n we find different scaling form: Z(N) approximately omega(N)mu(N1/d(f), where d(f) is the fractal dimension of the lattice, which also differs from the formula expected for homogeneous lattices. We discuss possible implications of our results on studies of real compact polymers.</abstract><cop>United States</cop><pmid>17677410</pmid><doi>10.1103/PhysRevE.76.011107</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2007-07, Vol.76 (1 Pt 1), p.011107-011107, Article 011107
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_68132823
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Scaling of Hamiltonian walks on fractal lattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20of%20Hamiltonian%20walks%20on%20fractal%20lattices&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Elezovi%C4%87-Hadzi%C4%87,%20Suncica&rft.date=2007-07-01&rft.volume=76&rft.issue=1%20Pt%201&rft.spage=011107&rft.epage=011107&rft.pages=011107-011107&rft.artnum=011107&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.76.011107&rft_dat=%3Cproquest_cross%3E68132823%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-d4ae60473cf68fe46b765c057b74deccc9611513ae37d95a7646e81cd4758383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68132823&rft_id=info:pmid/17677410&rfr_iscdi=true