Loading…

Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications

Although ZnO and ZnS are abundant, stable, and environmentally benign, their band gap energies (3.44, 3.72 eV, respectively) are too large for optimal photovoltaic efficiency. By using band-corrected pseudopotential density functional theory calculations, we study how the band gap, optical absorptio...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2007-08, Vol.7 (8), p.2377-2382
Main Authors: Schrier, Joshua, Demchenko, Denis O, Lin-Wang, Alivisatos, A. Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03
cites cdi_FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03
container_end_page 2382
container_issue 8
container_start_page 2377
container_title Nano letters
container_volume 7
creator Schrier, Joshua
Demchenko, Denis O
Lin-Wang
Alivisatos, A. Paul
description Although ZnO and ZnS are abundant, stable, and environmentally benign, their band gap energies (3.44, 3.72 eV, respectively) are too large for optimal photovoltaic efficiency. By using band-corrected pseudopotential density functional theory calculations, we study how the band gap, optical absorption, and carrier localization can be controlled by forming quantum-well-like and nanowire-based heterostructures of ZnO/ZnS and ZnO/ZnTe. In the case of ZnO/ZnS core/shell nanowires, which can be synthesized using existing methods, we obtain a band gap of 2.07 eV, which corresponds to a Shockley−Quiesser efficiency limit of 23%. On the basis of these nanowire results, we propose that ZnO/ZnS core/shell nanowires can be used as photovoltaic devices with organic polymer semiconductors as p-channel contacts.
doi_str_mv 10.1021/nl071027k
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68144637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68144637</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03</originalsourceid><addsrcrecordid>eNptkE9LwzAYh4Mobk4PfgHpRcHDXNL8aXIcQ50w2MB5cJeSpgl2dk1NUsFvb2Rlu3jKj_Dwe9_3AeAawQcEUzRpapjFkH2egCGiGI6ZEOnpIXMyABfebyGEAlN4DgYoY4RiRofgfdmGSsk6WTnbahcq7RNrkk2znGya10Q2ZZ_XOpnroJ31wXUqdC6Cxrpk9WGD_bZ1kJVKpm1bx7ZQ2cZfgjMja6-v-ncE3p4e17P5eLF8fplNF2NJCAljneK0xEIXNFPSME4VEgiXGReQFwUrC8NoJgrGtEZElVzSuHspICU8_hiIR-Bu39s6-9VpH_Jd5ZWua9lo2_mccUQIw1kE7_egikd4p03eumon3U-OYP7nMT94jOxNX9oVO10eyV5cBG57QPqozzjZqMofOS4EzAQ-clL5fGs710QX_wz8BSlChs8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68144637</pqid></control><display><type>article</type><title>Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Schrier, Joshua ; Demchenko, Denis O ; Lin-Wang ; Alivisatos, A. Paul</creator><creatorcontrib>Schrier, Joshua ; Demchenko, Denis O ; Lin-Wang ; Alivisatos, A. Paul</creatorcontrib><description>Although ZnO and ZnS are abundant, stable, and environmentally benign, their band gap energies (3.44, 3.72 eV, respectively) are too large for optimal photovoltaic efficiency. By using band-corrected pseudopotential density functional theory calculations, we study how the band gap, optical absorption, and carrier localization can be controlled by forming quantum-well-like and nanowire-based heterostructures of ZnO/ZnS and ZnO/ZnTe. In the case of ZnO/ZnS core/shell nanowires, which can be synthesized using existing methods, we obtain a band gap of 2.07 eV, which corresponds to a Shockley−Quiesser efficiency limit of 23%. On the basis of these nanowire results, we propose that ZnO/ZnS core/shell nanowires can be used as photovoltaic devices with organic polymer semiconductors as p-channel contacts.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl071027k</identifier><identifier>PMID: 17645365</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Computer Simulation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electric Power Supplies ; Electromagnetic Fields ; Electron states ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronics ; Exact sciences and technology ; Light ; Methods of electronic structure calculations ; Models, Chemical ; Models, Molecular ; Molecular electronics, nanoelectronics ; Nanostructures - chemistry ; Nanostructures - radiation effects ; Nanostructures - ultrastructure ; Nanotechnology - methods ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Particle Size ; Photochemistry - methods ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Tellurium - chemistry ; Tellurium - radiation effects ; Zinc Oxide - chemistry ; Zinc Oxide - radiation effects</subject><ispartof>Nano letters, 2007-08, Vol.7 (8), p.2377-2382</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03</citedby><cites>FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18990793$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17645365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schrier, Joshua</creatorcontrib><creatorcontrib>Demchenko, Denis O</creatorcontrib><creatorcontrib>Lin-Wang</creatorcontrib><creatorcontrib>Alivisatos, A. Paul</creatorcontrib><title>Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Although ZnO and ZnS are abundant, stable, and environmentally benign, their band gap energies (3.44, 3.72 eV, respectively) are too large for optimal photovoltaic efficiency. By using band-corrected pseudopotential density functional theory calculations, we study how the band gap, optical absorption, and carrier localization can be controlled by forming quantum-well-like and nanowire-based heterostructures of ZnO/ZnS and ZnO/ZnTe. In the case of ZnO/ZnS core/shell nanowires, which can be synthesized using existing methods, we obtain a band gap of 2.07 eV, which corresponds to a Shockley−Quiesser efficiency limit of 23%. On the basis of these nanowire results, we propose that ZnO/ZnS core/shell nanowires can be used as photovoltaic devices with organic polymer semiconductors as p-channel contacts.</description><subject>Applied sciences</subject><subject>Computer Simulation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electric Power Supplies</subject><subject>Electromagnetic Fields</subject><subject>Electron states</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Light</subject><subject>Methods of electronic structure calculations</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - radiation effects</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - methods</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Particle Size</subject><subject>Photochemistry - methods</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Tellurium - chemistry</subject><subject>Tellurium - radiation effects</subject><subject>Zinc Oxide - chemistry</subject><subject>Zinc Oxide - radiation effects</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNptkE9LwzAYh4Mobk4PfgHpRcHDXNL8aXIcQ50w2MB5cJeSpgl2dk1NUsFvb2Rlu3jKj_Dwe9_3AeAawQcEUzRpapjFkH2egCGiGI6ZEOnpIXMyABfebyGEAlN4DgYoY4RiRofgfdmGSsk6WTnbahcq7RNrkk2znGya10Q2ZZ_XOpnroJ31wXUqdC6Cxrpk9WGD_bZ1kJVKpm1bx7ZQ2cZfgjMja6-v-ncE3p4e17P5eLF8fplNF2NJCAljneK0xEIXNFPSME4VEgiXGReQFwUrC8NoJgrGtEZElVzSuHspICU8_hiIR-Bu39s6-9VpH_Jd5ZWua9lo2_mccUQIw1kE7_egikd4p03eumon3U-OYP7nMT94jOxNX9oVO10eyV5cBG57QPqozzjZqMofOS4EzAQ-clL5fGs710QX_wz8BSlChs8</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Schrier, Joshua</creator><creator>Demchenko, Denis O</creator><creator>Lin-Wang</creator><creator>Alivisatos, A. Paul</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070801</creationdate><title>Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications</title><author>Schrier, Joshua ; Demchenko, Denis O ; Lin-Wang ; Alivisatos, A. Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Computer Simulation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electric Power Supplies</topic><topic>Electromagnetic Fields</topic><topic>Electron states</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Light</topic><topic>Methods of electronic structure calculations</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - radiation effects</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - methods</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Particle Size</topic><topic>Photochemistry - methods</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Tellurium - chemistry</topic><topic>Tellurium - radiation effects</topic><topic>Zinc Oxide - chemistry</topic><topic>Zinc Oxide - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schrier, Joshua</creatorcontrib><creatorcontrib>Demchenko, Denis O</creatorcontrib><creatorcontrib>Lin-Wang</creatorcontrib><creatorcontrib>Alivisatos, A. Paul</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schrier, Joshua</au><au>Demchenko, Denis O</au><au>Lin-Wang</au><au>Alivisatos, A. Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>7</volume><issue>8</issue><spage>2377</spage><epage>2382</epage><pages>2377-2382</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Although ZnO and ZnS are abundant, stable, and environmentally benign, their band gap energies (3.44, 3.72 eV, respectively) are too large for optimal photovoltaic efficiency. By using band-corrected pseudopotential density functional theory calculations, we study how the band gap, optical absorption, and carrier localization can be controlled by forming quantum-well-like and nanowire-based heterostructures of ZnO/ZnS and ZnO/ZnTe. In the case of ZnO/ZnS core/shell nanowires, which can be synthesized using existing methods, we obtain a band gap of 2.07 eV, which corresponds to a Shockley−Quiesser efficiency limit of 23%. On the basis of these nanowire results, we propose that ZnO/ZnS core/shell nanowires can be used as photovoltaic devices with organic polymer semiconductors as p-channel contacts.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17645365</pmid><doi>10.1021/nl071027k</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2007-08, Vol.7 (8), p.2377-2382
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_68144637
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Computer Simulation
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electric Power Supplies
Electromagnetic Fields
Electron states
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronics
Exact sciences and technology
Light
Methods of electronic structure calculations
Models, Chemical
Models, Molecular
Molecular electronics, nanoelectronics
Nanostructures - chemistry
Nanostructures - radiation effects
Nanostructures - ultrastructure
Nanotechnology - methods
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
Particle Size
Photochemistry - methods
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
Tellurium - chemistry
Tellurium - radiation effects
Zinc Oxide - chemistry
Zinc Oxide - radiation effects
title Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Properties%20of%20ZnO/ZnS%20and%20ZnO/ZnTe%20Heterostructures%20for%20Photovoltaic%20Applications&rft.jtitle=Nano%20letters&rft.au=Schrier,%20Joshua&rft.date=2007-08-01&rft.volume=7&rft.issue=8&rft.spage=2377&rft.epage=2382&rft.pages=2377-2382&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl071027k&rft_dat=%3Cproquest_cross%3E68144637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68144637&rft_id=info:pmid/17645365&rfr_iscdi=true