Loading…
Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications
Although ZnO and ZnS are abundant, stable, and environmentally benign, their band gap energies (3.44, 3.72 eV, respectively) are too large for optimal photovoltaic efficiency. By using band-corrected pseudopotential density functional theory calculations, we study how the band gap, optical absorptio...
Saved in:
Published in: | Nano letters 2007-08, Vol.7 (8), p.2377-2382 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03 |
---|---|
cites | cdi_FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03 |
container_end_page | 2382 |
container_issue | 8 |
container_start_page | 2377 |
container_title | Nano letters |
container_volume | 7 |
creator | Schrier, Joshua Demchenko, Denis O Lin-Wang Alivisatos, A. Paul |
description | Although ZnO and ZnS are abundant, stable, and environmentally benign, their band gap energies (3.44, 3.72 eV, respectively) are too large for optimal photovoltaic efficiency. By using band-corrected pseudopotential density functional theory calculations, we study how the band gap, optical absorption, and carrier localization can be controlled by forming quantum-well-like and nanowire-based heterostructures of ZnO/ZnS and ZnO/ZnTe. In the case of ZnO/ZnS core/shell nanowires, which can be synthesized using existing methods, we obtain a band gap of 2.07 eV, which corresponds to a Shockley−Quiesser efficiency limit of 23%. On the basis of these nanowire results, we propose that ZnO/ZnS core/shell nanowires can be used as photovoltaic devices with organic polymer semiconductors as p-channel contacts. |
doi_str_mv | 10.1021/nl071027k |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68144637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68144637</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03</originalsourceid><addsrcrecordid>eNptkE9LwzAYh4Mobk4PfgHpRcHDXNL8aXIcQ50w2MB5cJeSpgl2dk1NUsFvb2Rlu3jKj_Dwe9_3AeAawQcEUzRpapjFkH2egCGiGI6ZEOnpIXMyABfebyGEAlN4DgYoY4RiRofgfdmGSsk6WTnbahcq7RNrkk2znGya10Q2ZZ_XOpnroJ31wXUqdC6Cxrpk9WGD_bZ1kJVKpm1bx7ZQ2cZfgjMja6-v-ncE3p4e17P5eLF8fplNF2NJCAljneK0xEIXNFPSME4VEgiXGReQFwUrC8NoJgrGtEZElVzSuHspICU8_hiIR-Bu39s6-9VpH_Jd5ZWua9lo2_mccUQIw1kE7_egikd4p03eumon3U-OYP7nMT94jOxNX9oVO10eyV5cBG57QPqozzjZqMofOS4EzAQ-clL5fGs710QX_wz8BSlChs8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68144637</pqid></control><display><type>article</type><title>Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Schrier, Joshua ; Demchenko, Denis O ; Lin-Wang ; Alivisatos, A. Paul</creator><creatorcontrib>Schrier, Joshua ; Demchenko, Denis O ; Lin-Wang ; Alivisatos, A. Paul</creatorcontrib><description>Although ZnO and ZnS are abundant, stable, and environmentally benign, their band gap energies (3.44, 3.72 eV, respectively) are too large for optimal photovoltaic efficiency. By using band-corrected pseudopotential density functional theory calculations, we study how the band gap, optical absorption, and carrier localization can be controlled by forming quantum-well-like and nanowire-based heterostructures of ZnO/ZnS and ZnO/ZnTe. In the case of ZnO/ZnS core/shell nanowires, which can be synthesized using existing methods, we obtain a band gap of 2.07 eV, which corresponds to a Shockley−Quiesser efficiency limit of 23%. On the basis of these nanowire results, we propose that ZnO/ZnS core/shell nanowires can be used as photovoltaic devices with organic polymer semiconductors as p-channel contacts.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl071027k</identifier><identifier>PMID: 17645365</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Computer Simulation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electric Power Supplies ; Electromagnetic Fields ; Electron states ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronics ; Exact sciences and technology ; Light ; Methods of electronic structure calculations ; Models, Chemical ; Models, Molecular ; Molecular electronics, nanoelectronics ; Nanostructures - chemistry ; Nanostructures - radiation effects ; Nanostructures - ultrastructure ; Nanotechnology - methods ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Particle Size ; Photochemistry - methods ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Tellurium - chemistry ; Tellurium - radiation effects ; Zinc Oxide - chemistry ; Zinc Oxide - radiation effects</subject><ispartof>Nano letters, 2007-08, Vol.7 (8), p.2377-2382</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03</citedby><cites>FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18990793$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17645365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schrier, Joshua</creatorcontrib><creatorcontrib>Demchenko, Denis O</creatorcontrib><creatorcontrib>Lin-Wang</creatorcontrib><creatorcontrib>Alivisatos, A. Paul</creatorcontrib><title>Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Although ZnO and ZnS are abundant, stable, and environmentally benign, their band gap energies (3.44, 3.72 eV, respectively) are too large for optimal photovoltaic efficiency. By using band-corrected pseudopotential density functional theory calculations, we study how the band gap, optical absorption, and carrier localization can be controlled by forming quantum-well-like and nanowire-based heterostructures of ZnO/ZnS and ZnO/ZnTe. In the case of ZnO/ZnS core/shell nanowires, which can be synthesized using existing methods, we obtain a band gap of 2.07 eV, which corresponds to a Shockley−Quiesser efficiency limit of 23%. On the basis of these nanowire results, we propose that ZnO/ZnS core/shell nanowires can be used as photovoltaic devices with organic polymer semiconductors as p-channel contacts.</description><subject>Applied sciences</subject><subject>Computer Simulation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electric Power Supplies</subject><subject>Electromagnetic Fields</subject><subject>Electron states</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Light</subject><subject>Methods of electronic structure calculations</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - radiation effects</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - methods</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Particle Size</subject><subject>Photochemistry - methods</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Tellurium - chemistry</subject><subject>Tellurium - radiation effects</subject><subject>Zinc Oxide - chemistry</subject><subject>Zinc Oxide - radiation effects</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNptkE9LwzAYh4Mobk4PfgHpRcHDXNL8aXIcQ50w2MB5cJeSpgl2dk1NUsFvb2Rlu3jKj_Dwe9_3AeAawQcEUzRpapjFkH2egCGiGI6ZEOnpIXMyABfebyGEAlN4DgYoY4RiRofgfdmGSsk6WTnbahcq7RNrkk2znGya10Q2ZZ_XOpnroJ31wXUqdC6Cxrpk9WGD_bZ1kJVKpm1bx7ZQ2cZfgjMja6-v-ncE3p4e17P5eLF8fplNF2NJCAljneK0xEIXNFPSME4VEgiXGReQFwUrC8NoJgrGtEZElVzSuHspICU8_hiIR-Bu39s6-9VpH_Jd5ZWua9lo2_mccUQIw1kE7_egikd4p03eumon3U-OYP7nMT94jOxNX9oVO10eyV5cBG57QPqozzjZqMofOS4EzAQ-clL5fGs710QX_wz8BSlChs8</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Schrier, Joshua</creator><creator>Demchenko, Denis O</creator><creator>Lin-Wang</creator><creator>Alivisatos, A. Paul</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070801</creationdate><title>Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications</title><author>Schrier, Joshua ; Demchenko, Denis O ; Lin-Wang ; Alivisatos, A. Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Computer Simulation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electric Power Supplies</topic><topic>Electromagnetic Fields</topic><topic>Electron states</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Light</topic><topic>Methods of electronic structure calculations</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - radiation effects</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - methods</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Particle Size</topic><topic>Photochemistry - methods</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Tellurium - chemistry</topic><topic>Tellurium - radiation effects</topic><topic>Zinc Oxide - chemistry</topic><topic>Zinc Oxide - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schrier, Joshua</creatorcontrib><creatorcontrib>Demchenko, Denis O</creatorcontrib><creatorcontrib>Lin-Wang</creatorcontrib><creatorcontrib>Alivisatos, A. Paul</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schrier, Joshua</au><au>Demchenko, Denis O</au><au>Lin-Wang</au><au>Alivisatos, A. Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>7</volume><issue>8</issue><spage>2377</spage><epage>2382</epage><pages>2377-2382</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Although ZnO and ZnS are abundant, stable, and environmentally benign, their band gap energies (3.44, 3.72 eV, respectively) are too large for optimal photovoltaic efficiency. By using band-corrected pseudopotential density functional theory calculations, we study how the band gap, optical absorption, and carrier localization can be controlled by forming quantum-well-like and nanowire-based heterostructures of ZnO/ZnS and ZnO/ZnTe. In the case of ZnO/ZnS core/shell nanowires, which can be synthesized using existing methods, we obtain a band gap of 2.07 eV, which corresponds to a Shockley−Quiesser efficiency limit of 23%. On the basis of these nanowire results, we propose that ZnO/ZnS core/shell nanowires can be used as photovoltaic devices with organic polymer semiconductors as p-channel contacts.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17645365</pmid><doi>10.1021/nl071027k</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2007-08, Vol.7 (8), p.2377-2382 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_68144637 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Applied sciences Computer Simulation Condensed matter: electronic structure, electrical, magnetic, and optical properties Electric Power Supplies Electromagnetic Fields Electron states Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronics Exact sciences and technology Light Methods of electronic structure calculations Models, Chemical Models, Molecular Molecular electronics, nanoelectronics Nanostructures - chemistry Nanostructures - radiation effects Nanostructures - ultrastructure Nanotechnology - methods Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures Particle Size Photochemistry - methods Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Tellurium - chemistry Tellurium - radiation effects Zinc Oxide - chemistry Zinc Oxide - radiation effects |
title | Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Properties%20of%20ZnO/ZnS%20and%20ZnO/ZnTe%20Heterostructures%20for%20Photovoltaic%20Applications&rft.jtitle=Nano%20letters&rft.au=Schrier,%20Joshua&rft.date=2007-08-01&rft.volume=7&rft.issue=8&rft.spage=2377&rft.epage=2382&rft.pages=2377-2382&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl071027k&rft_dat=%3Cproquest_cross%3E68144637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a444t-e232d39eb57caf685c1913d78908bb6dbf6579b66ee14cd8a5764d90548ee1f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68144637&rft_id=info:pmid/17645365&rfr_iscdi=true |