Loading…
Mechanism of Chromosome Compaction and Looping by the Escherichia coli Nucleoid Protein Fis
Fis, the most abundant DNA-binding protein in Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis bin...
Saved in:
Published in: | Journal of molecular biology 2006-12, Vol.364 (4), p.777-798 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813 |
---|---|
cites | cdi_FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813 |
container_end_page | 798 |
container_issue | 4 |
container_start_page | 777 |
container_title | Journal of molecular biology |
container_volume | 364 |
creator | Skoko, Dunja Yoo, Daniel Bai, Hua Schnurr, Bernhard Yan, Jie McLeod, Sarah M. Marko, John F. Johnson, Reid C. |
description | Fis, the most abundant DNA-binding protein in
Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis–DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 μM Fis, are able to collapse large DNA molecules
via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role
in vivo as a domain barrier element by organizing DNA loops within the
E. coli chromosome. |
doi_str_mv | 10.1016/j.jmb.2006.09.043 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68163653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283606012496</els_id><sourcerecordid>19515859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813</originalsourceid><addsrcrecordid>eNqFkM1u1DAURi1ERaeFB2CDvGKXcB3Hf2KFRi2tNBQWsGJhOfYN8SiJBzuD1Lcn1YzEjq7u5nxHuoeQtwxqBkx-2Nf7qasbAFmDqaHlL8iGgTaVlly_JBuApqkazeUluSplDwCCt_oVuWQKWtGYdkN-fkE_uDmWiaaeboecplTShHSbpoPzS0wzdXOgu5QOcf5Fu0e6DEhvih8wRz9ER30aI304-hFTDPRbTgvGmd7G8ppc9G4s-OZ8r8mP25vv27tq9_Xz_fbTrvKCm6XqUShjeuEC1xBa5ZnpetXIVimDqBR3QoJh4J3pPTRSN2r9OPDQadBKM35N3p-8h5x-H7EsdorF4zi6GdOxWKmZ5FLwZ0FmBBNamBVkJ9DnVErG3h5ynFx-tAzsU3q7t2t6-5TegrFr-nXz7iw_dhOGf4tz6xX4eAJwbfEnYrbFR5w9hpjRLzak-B_9X_N8kw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19515859</pqid></control><display><type>article</type><title>Mechanism of Chromosome Compaction and Looping by the Escherichia coli Nucleoid Protein Fis</title><source>ScienceDirect Freedom Collection</source><creator>Skoko, Dunja ; Yoo, Daniel ; Bai, Hua ; Schnurr, Bernhard ; Yan, Jie ; McLeod, Sarah M. ; Marko, John F. ; Johnson, Reid C.</creator><creatorcontrib>Skoko, Dunja ; Yoo, Daniel ; Bai, Hua ; Schnurr, Bernhard ; Yan, Jie ; McLeod, Sarah M. ; Marko, John F. ; Johnson, Reid C.</creatorcontrib><description>Fis, the most abundant DNA-binding protein in
Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis–DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 μM Fis, are able to collapse large DNA molecules
via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role
in vivo as a domain barrier element by organizing DNA loops within the
E. coli chromosome.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2006.09.043</identifier><identifier>PMID: 17045294</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>chromosome structure ; Chromosomes, Bacterial - chemistry ; Chromosomes, Bacterial - ultrastructure ; Dimerization ; DNA - chemistry ; DNA - metabolism ; DNA looping ; DNA-Binding Proteins ; Escherichia coli ; Escherichia coli Proteins - physiology ; Factor For Inversion Stimulation Protein ; non-specific DNA binding ; Nucleic Acid Conformation ; nucleoprotein filament ; Protein Binding ; single-DNA molecule micromanipulation ; Transcription Factors - physiology</subject><ispartof>Journal of molecular biology, 2006-12, Vol.364 (4), p.777-798</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813</citedby><cites>FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17045294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Skoko, Dunja</creatorcontrib><creatorcontrib>Yoo, Daniel</creatorcontrib><creatorcontrib>Bai, Hua</creatorcontrib><creatorcontrib>Schnurr, Bernhard</creatorcontrib><creatorcontrib>Yan, Jie</creatorcontrib><creatorcontrib>McLeod, Sarah M.</creatorcontrib><creatorcontrib>Marko, John F.</creatorcontrib><creatorcontrib>Johnson, Reid C.</creatorcontrib><title>Mechanism of Chromosome Compaction and Looping by the Escherichia coli Nucleoid Protein Fis</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Fis, the most abundant DNA-binding protein in
Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis–DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 μM Fis, are able to collapse large DNA molecules
via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role
in vivo as a domain barrier element by organizing DNA loops within the
E. coli chromosome.</description><subject>chromosome structure</subject><subject>Chromosomes, Bacterial - chemistry</subject><subject>Chromosomes, Bacterial - ultrastructure</subject><subject>Dimerization</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA looping</subject><subject>DNA-Binding Proteins</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - physiology</subject><subject>Factor For Inversion Stimulation Protein</subject><subject>non-specific DNA binding</subject><subject>Nucleic Acid Conformation</subject><subject>nucleoprotein filament</subject><subject>Protein Binding</subject><subject>single-DNA molecule micromanipulation</subject><subject>Transcription Factors - physiology</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkM1u1DAURi1ERaeFB2CDvGKXcB3Hf2KFRi2tNBQWsGJhOfYN8SiJBzuD1Lcn1YzEjq7u5nxHuoeQtwxqBkx-2Nf7qasbAFmDqaHlL8iGgTaVlly_JBuApqkazeUluSplDwCCt_oVuWQKWtGYdkN-fkE_uDmWiaaeboecplTShHSbpoPzS0wzdXOgu5QOcf5Fu0e6DEhvih8wRz9ER30aI304-hFTDPRbTgvGmd7G8ppc9G4s-OZ8r8mP25vv27tq9_Xz_fbTrvKCm6XqUShjeuEC1xBa5ZnpetXIVimDqBR3QoJh4J3pPTRSN2r9OPDQadBKM35N3p-8h5x-H7EsdorF4zi6GdOxWKmZ5FLwZ0FmBBNamBVkJ9DnVErG3h5ynFx-tAzsU3q7t2t6-5TegrFr-nXz7iw_dhOGf4tz6xX4eAJwbfEnYrbFR5w9hpjRLzak-B_9X_N8kw8</recordid><startdate>20061208</startdate><enddate>20061208</enddate><creator>Skoko, Dunja</creator><creator>Yoo, Daniel</creator><creator>Bai, Hua</creator><creator>Schnurr, Bernhard</creator><creator>Yan, Jie</creator><creator>McLeod, Sarah M.</creator><creator>Marko, John F.</creator><creator>Johnson, Reid C.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20061208</creationdate><title>Mechanism of Chromosome Compaction and Looping by the Escherichia coli Nucleoid Protein Fis</title><author>Skoko, Dunja ; Yoo, Daniel ; Bai, Hua ; Schnurr, Bernhard ; Yan, Jie ; McLeod, Sarah M. ; Marko, John F. ; Johnson, Reid C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>chromosome structure</topic><topic>Chromosomes, Bacterial - chemistry</topic><topic>Chromosomes, Bacterial - ultrastructure</topic><topic>Dimerization</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA looping</topic><topic>DNA-Binding Proteins</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - physiology</topic><topic>Factor For Inversion Stimulation Protein</topic><topic>non-specific DNA binding</topic><topic>Nucleic Acid Conformation</topic><topic>nucleoprotein filament</topic><topic>Protein Binding</topic><topic>single-DNA molecule micromanipulation</topic><topic>Transcription Factors - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skoko, Dunja</creatorcontrib><creatorcontrib>Yoo, Daniel</creatorcontrib><creatorcontrib>Bai, Hua</creatorcontrib><creatorcontrib>Schnurr, Bernhard</creatorcontrib><creatorcontrib>Yan, Jie</creatorcontrib><creatorcontrib>McLeod, Sarah M.</creatorcontrib><creatorcontrib>Marko, John F.</creatorcontrib><creatorcontrib>Johnson, Reid C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skoko, Dunja</au><au>Yoo, Daniel</au><au>Bai, Hua</au><au>Schnurr, Bernhard</au><au>Yan, Jie</au><au>McLeod, Sarah M.</au><au>Marko, John F.</au><au>Johnson, Reid C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Chromosome Compaction and Looping by the Escherichia coli Nucleoid Protein Fis</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2006-12-08</date><risdate>2006</risdate><volume>364</volume><issue>4</issue><spage>777</spage><epage>798</epage><pages>777-798</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Fis, the most abundant DNA-binding protein in
Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis–DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 μM Fis, are able to collapse large DNA molecules
via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role
in vivo as a domain barrier element by organizing DNA loops within the
E. coli chromosome.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17045294</pmid><doi>10.1016/j.jmb.2006.09.043</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2006-12, Vol.364 (4), p.777-798 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_68163653 |
source | ScienceDirect Freedom Collection |
subjects | chromosome structure Chromosomes, Bacterial - chemistry Chromosomes, Bacterial - ultrastructure Dimerization DNA - chemistry DNA - metabolism DNA looping DNA-Binding Proteins Escherichia coli Escherichia coli Proteins - physiology Factor For Inversion Stimulation Protein non-specific DNA binding Nucleic Acid Conformation nucleoprotein filament Protein Binding single-DNA molecule micromanipulation Transcription Factors - physiology |
title | Mechanism of Chromosome Compaction and Looping by the Escherichia coli Nucleoid Protein Fis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Chromosome%20Compaction%20and%20Looping%20by%20the%20Escherichia%20coli%20Nucleoid%20Protein%20Fis&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Skoko,%20Dunja&rft.date=2006-12-08&rft.volume=364&rft.issue=4&rft.spage=777&rft.epage=798&rft.pages=777-798&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2006.09.043&rft_dat=%3Cproquest_cross%3E19515859%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19515859&rft_id=info:pmid/17045294&rfr_iscdi=true |