Loading…

Mechanism of Chromosome Compaction and Looping by the Escherichia coli Nucleoid Protein Fis

Fis, the most abundant DNA-binding protein in Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis bin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2006-12, Vol.364 (4), p.777-798
Main Authors: Skoko, Dunja, Yoo, Daniel, Bai, Hua, Schnurr, Bernhard, Yan, Jie, McLeod, Sarah M., Marko, John F., Johnson, Reid C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813
cites cdi_FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813
container_end_page 798
container_issue 4
container_start_page 777
container_title Journal of molecular biology
container_volume 364
creator Skoko, Dunja
Yoo, Daniel
Bai, Hua
Schnurr, Bernhard
Yan, Jie
McLeod, Sarah M.
Marko, John F.
Johnson, Reid C.
description Fis, the most abundant DNA-binding protein in Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis–DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 μM Fis, are able to collapse large DNA molecules via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role in vivo as a domain barrier element by organizing DNA loops within the E. coli chromosome.
doi_str_mv 10.1016/j.jmb.2006.09.043
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68163653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283606012496</els_id><sourcerecordid>19515859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813</originalsourceid><addsrcrecordid>eNqFkM1u1DAURi1ERaeFB2CDvGKXcB3Hf2KFRi2tNBQWsGJhOfYN8SiJBzuD1Lcn1YzEjq7u5nxHuoeQtwxqBkx-2Nf7qasbAFmDqaHlL8iGgTaVlly_JBuApqkazeUluSplDwCCt_oVuWQKWtGYdkN-fkE_uDmWiaaeboecplTShHSbpoPzS0wzdXOgu5QOcf5Fu0e6DEhvih8wRz9ER30aI304-hFTDPRbTgvGmd7G8ppc9G4s-OZ8r8mP25vv27tq9_Xz_fbTrvKCm6XqUShjeuEC1xBa5ZnpetXIVimDqBR3QoJh4J3pPTRSN2r9OPDQadBKM35N3p-8h5x-H7EsdorF4zi6GdOxWKmZ5FLwZ0FmBBNamBVkJ9DnVErG3h5ynFx-tAzsU3q7t2t6-5TegrFr-nXz7iw_dhOGf4tz6xX4eAJwbfEnYrbFR5w9hpjRLzak-B_9X_N8kw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19515859</pqid></control><display><type>article</type><title>Mechanism of Chromosome Compaction and Looping by the Escherichia coli Nucleoid Protein Fis</title><source>ScienceDirect Freedom Collection</source><creator>Skoko, Dunja ; Yoo, Daniel ; Bai, Hua ; Schnurr, Bernhard ; Yan, Jie ; McLeod, Sarah M. ; Marko, John F. ; Johnson, Reid C.</creator><creatorcontrib>Skoko, Dunja ; Yoo, Daniel ; Bai, Hua ; Schnurr, Bernhard ; Yan, Jie ; McLeod, Sarah M. ; Marko, John F. ; Johnson, Reid C.</creatorcontrib><description>Fis, the most abundant DNA-binding protein in Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis–DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 μM Fis, are able to collapse large DNA molecules via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role in vivo as a domain barrier element by organizing DNA loops within the E. coli chromosome.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2006.09.043</identifier><identifier>PMID: 17045294</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>chromosome structure ; Chromosomes, Bacterial - chemistry ; Chromosomes, Bacterial - ultrastructure ; Dimerization ; DNA - chemistry ; DNA - metabolism ; DNA looping ; DNA-Binding Proteins ; Escherichia coli ; Escherichia coli Proteins - physiology ; Factor For Inversion Stimulation Protein ; non-specific DNA binding ; Nucleic Acid Conformation ; nucleoprotein filament ; Protein Binding ; single-DNA molecule micromanipulation ; Transcription Factors - physiology</subject><ispartof>Journal of molecular biology, 2006-12, Vol.364 (4), p.777-798</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813</citedby><cites>FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17045294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Skoko, Dunja</creatorcontrib><creatorcontrib>Yoo, Daniel</creatorcontrib><creatorcontrib>Bai, Hua</creatorcontrib><creatorcontrib>Schnurr, Bernhard</creatorcontrib><creatorcontrib>Yan, Jie</creatorcontrib><creatorcontrib>McLeod, Sarah M.</creatorcontrib><creatorcontrib>Marko, John F.</creatorcontrib><creatorcontrib>Johnson, Reid C.</creatorcontrib><title>Mechanism of Chromosome Compaction and Looping by the Escherichia coli Nucleoid Protein Fis</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Fis, the most abundant DNA-binding protein in Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis–DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 μM Fis, are able to collapse large DNA molecules via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role in vivo as a domain barrier element by organizing DNA loops within the E. coli chromosome.</description><subject>chromosome structure</subject><subject>Chromosomes, Bacterial - chemistry</subject><subject>Chromosomes, Bacterial - ultrastructure</subject><subject>Dimerization</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA looping</subject><subject>DNA-Binding Proteins</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - physiology</subject><subject>Factor For Inversion Stimulation Protein</subject><subject>non-specific DNA binding</subject><subject>Nucleic Acid Conformation</subject><subject>nucleoprotein filament</subject><subject>Protein Binding</subject><subject>single-DNA molecule micromanipulation</subject><subject>Transcription Factors - physiology</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkM1u1DAURi1ERaeFB2CDvGKXcB3Hf2KFRi2tNBQWsGJhOfYN8SiJBzuD1Lcn1YzEjq7u5nxHuoeQtwxqBkx-2Nf7qasbAFmDqaHlL8iGgTaVlly_JBuApqkazeUluSplDwCCt_oVuWQKWtGYdkN-fkE_uDmWiaaeboecplTShHSbpoPzS0wzdXOgu5QOcf5Fu0e6DEhvih8wRz9ER30aI304-hFTDPRbTgvGmd7G8ppc9G4s-OZ8r8mP25vv27tq9_Xz_fbTrvKCm6XqUShjeuEC1xBa5ZnpetXIVimDqBR3QoJh4J3pPTRSN2r9OPDQadBKM35N3p-8h5x-H7EsdorF4zi6GdOxWKmZ5FLwZ0FmBBNamBVkJ9DnVErG3h5ynFx-tAzsU3q7t2t6-5TegrFr-nXz7iw_dhOGf4tz6xX4eAJwbfEnYrbFR5w9hpjRLzak-B_9X_N8kw8</recordid><startdate>20061208</startdate><enddate>20061208</enddate><creator>Skoko, Dunja</creator><creator>Yoo, Daniel</creator><creator>Bai, Hua</creator><creator>Schnurr, Bernhard</creator><creator>Yan, Jie</creator><creator>McLeod, Sarah M.</creator><creator>Marko, John F.</creator><creator>Johnson, Reid C.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20061208</creationdate><title>Mechanism of Chromosome Compaction and Looping by the Escherichia coli Nucleoid Protein Fis</title><author>Skoko, Dunja ; Yoo, Daniel ; Bai, Hua ; Schnurr, Bernhard ; Yan, Jie ; McLeod, Sarah M. ; Marko, John F. ; Johnson, Reid C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>chromosome structure</topic><topic>Chromosomes, Bacterial - chemistry</topic><topic>Chromosomes, Bacterial - ultrastructure</topic><topic>Dimerization</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA looping</topic><topic>DNA-Binding Proteins</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - physiology</topic><topic>Factor For Inversion Stimulation Protein</topic><topic>non-specific DNA binding</topic><topic>Nucleic Acid Conformation</topic><topic>nucleoprotein filament</topic><topic>Protein Binding</topic><topic>single-DNA molecule micromanipulation</topic><topic>Transcription Factors - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skoko, Dunja</creatorcontrib><creatorcontrib>Yoo, Daniel</creatorcontrib><creatorcontrib>Bai, Hua</creatorcontrib><creatorcontrib>Schnurr, Bernhard</creatorcontrib><creatorcontrib>Yan, Jie</creatorcontrib><creatorcontrib>McLeod, Sarah M.</creatorcontrib><creatorcontrib>Marko, John F.</creatorcontrib><creatorcontrib>Johnson, Reid C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skoko, Dunja</au><au>Yoo, Daniel</au><au>Bai, Hua</au><au>Schnurr, Bernhard</au><au>Yan, Jie</au><au>McLeod, Sarah M.</au><au>Marko, John F.</au><au>Johnson, Reid C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Chromosome Compaction and Looping by the Escherichia coli Nucleoid Protein Fis</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2006-12-08</date><risdate>2006</risdate><volume>364</volume><issue>4</issue><spage>777</spage><epage>798</epage><pages>777-798</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Fis, the most abundant DNA-binding protein in Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis–DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 μM Fis, are able to collapse large DNA molecules via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role in vivo as a domain barrier element by organizing DNA loops within the E. coli chromosome.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17045294</pmid><doi>10.1016/j.jmb.2006.09.043</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2006-12, Vol.364 (4), p.777-798
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_68163653
source ScienceDirect Freedom Collection
subjects chromosome structure
Chromosomes, Bacterial - chemistry
Chromosomes, Bacterial - ultrastructure
Dimerization
DNA - chemistry
DNA - metabolism
DNA looping
DNA-Binding Proteins
Escherichia coli
Escherichia coli Proteins - physiology
Factor For Inversion Stimulation Protein
non-specific DNA binding
Nucleic Acid Conformation
nucleoprotein filament
Protein Binding
single-DNA molecule micromanipulation
Transcription Factors - physiology
title Mechanism of Chromosome Compaction and Looping by the Escherichia coli Nucleoid Protein Fis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Chromosome%20Compaction%20and%20Looping%20by%20the%20Escherichia%20coli%20Nucleoid%20Protein%20Fis&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Skoko,%20Dunja&rft.date=2006-12-08&rft.volume=364&rft.issue=4&rft.spage=777&rft.epage=798&rft.pages=777-798&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2006.09.043&rft_dat=%3Cproquest_cross%3E19515859%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-fe5799f5ad380d47c19bf7264779ee773a560910ca9fc026827006d3db8087813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19515859&rft_id=info:pmid/17045294&rfr_iscdi=true