Loading…
Effects of Solid-State Enzymatic Treatments on the Antioxidant Properties of Wheat Bran
This study evaluated the potential of solid-state enzyme treatments to release insoluble bound antioxidants such as phenolic acids from wheat bran, thereby improving its extractable and potentially bioaccessible antioxidant properties including scavenging capacities against peroxyl (ORAC), ABTS cati...
Saved in:
Published in: | Journal of agricultural and food chemistry 2006-11, Vol.54 (24), p.9032-9045 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study evaluated the potential of solid-state enzyme treatments to release insoluble bound antioxidants such as phenolic acids from wheat bran, thereby improving its extractable and potentially bioaccessible antioxidant properties including scavenging capacities against peroxyl (ORAC), ABTS cation, DPPH and hydroxyl radicals, total phenolic contents, and phenolic acid compositions. Investigated enzyme preparations included Viscozyme L, Pectinex 3XL, Ultraflo L, Flavourzyme 500L, Celluclast 1.5L, and porcine liver esterase. Results showed significant dose-dependent increases in extractable antioxidant properties for some enzyme preparations, and Ultraflo L was found to be the most efficient enzyme, able to convert as much as 50% of the insoluble bound ferulic acid in wheat bran to the soluble free form. The effect of moisture content on these solid-state enzyme reactions was also evaluated and found to be dependent on enzyme concentration. These data suggest that solid-state enzyme treatments of wheat bran may be a commercially viable post-harvest procedure for improving the bioaccessibility of wheat antioxidants. Keywords: Wheat; bran; enzyme; antioxidant; solid-state; phenolic; bioaccessibility; bioavailability |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf0616715 |