Loading…

Characterization of a Thermobifida fusca β-1,3-Glucanase (Lam81A) with a Potential Role in Plant Biomass Degradation

Thermobifida fusca is a filamentous soil bacterium that plays a major role in the breakdown of plant biomass. In this paper, we report the cloning, expression, purification, and characterization of the T. fusca enzyme, Lam81A. The Carbohydrate Active Enzymes Database (http://afmb.cnrs-mrs.fr/CAZY/)...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2006-11, Vol.45 (47), p.14094-14100
Main Authors: McGrath, Colleen E, Wilson, David B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermobifida fusca is a filamentous soil bacterium that plays a major role in the breakdown of plant biomass. In this paper, we report the cloning, expression, purification, and characterization of the T. fusca enzyme, Lam81A. The Carbohydrate Active Enzymes Database (http://afmb.cnrs-mrs.fr/CAZY/) indicates that Lam81A belongs to a relatively uncharacterized family of β-1,3-glucanases, family GH-81 [Coutinho, P. M., and Henrissat, B. (1999) in Recent Advances in Carbohydrate Bioengineering (Gilbert, H. J., Davies, G., Henrissat, B., and Svensson, B., Eds.) pp 3−12, The Royal Society of Chemistry, Cambridge, U.K.]. Microarray analysis suggests that Lam81A plays a role in biomass degradation, where its natural substrate may be the plant cell wall polysaccharide, callose, which is a polymer of β-1,3-linked glucose. Characterization of Lam81A has shown that the enzyme is specific for β-1,3-linked glucose polysaccharides, is endohydrolytic, and utilizes an inverting mechanism for substrate hydrolysis. In addition, the enzyme has a broad pH optimum from 5.5 to 10, a temperature optimum of 50 °C, and demonstrates substrate inhibition, as well as showing a high basal level of expression.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi061757r