Loading…

Golgi Twins in Late Mitosis Revealed by Genetically Encoded Tags for Live Cell Imaging and Correlated Electron Microscopy

Combinations of molecular tags visible in light and electron microscopes become particularly advantageous in the analysis of dynamic cellular components like the Golgi apparatus. This organelle disassembles at the onset of mitosis and, after a sequence of poorly understood events, reassembles after...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2006-11, Vol.103 (47), p.17777-17782
Main Authors: Gaietta, Guido M., Giepmans, Ben N. G., Deerinck, Thomas J., Smith, W. Bryan, Ngan, Lucy, Llopis, Juan, Adams, Stephen R., Tsien, Roger Y., Ellisman, Mark H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33
cites cdi_FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33
container_end_page 17782
container_issue 47
container_start_page 17777
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Gaietta, Guido M.
Giepmans, Ben N. G.
Deerinck, Thomas J.
Smith, W. Bryan
Ngan, Lucy
Llopis, Juan
Adams, Stephen R.
Tsien, Roger Y.
Ellisman, Mark H.
description Combinations of molecular tags visible in light and electron microscopes become particularly advantageous in the analysis of dynamic cellular components like the Golgi apparatus. This organelle disassembles at the onset of mitosis and, after a sequence of poorly understood events, reassembles after cytokinesis. The precise location of Golgi membranes and resident proteins during mitosis remains unclear, partly due to limitations of molecular markers and the resolution of light microscopy. We generated a fusion consisting of the first 117 residues of α-mannosidase II tagged with a fluorescent protein and a tetracysteine motif. The mannosidase component guarantees docking into the Golgi membrane, with the tags exposed in the lumen. The fluorescent protein is optically visible without further treatment, whereas the tetracysteine tag can be reduced acutely with a membrane-permeant phosphine, labeled with ReAsH, monitored in the light microscope, and used to trigger the photoconversion of diaminobenzidine, allowing 4D optical recording on live cells and correlated ultrastructural analysis by electron microscopy. These methods reveal that Golgi reassembly is preceded by the formation of four colinear clusters at telophase, two per daughter cell. Within each daughter, the smaller cluster near the midbody gradually migrates to rejoin the major cluster on the far side of the nucleus and asymmetrically reconstitutes a single Golgi apparatus, first in one daughter cell and then in the other. Our studies provide previously undescribed insights into Golgi disassociation and reassembly during mitosis and offer a powerful approach to follow recombinant protein distribution in 4D imaging and correlated high-resolution analysis.
doi_str_mv 10.1073/pnas.0608509103
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68180623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30052539</jstor_id><sourcerecordid>30052539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33</originalsourceid><addsrcrecordid>eNqFkUGP0zAQhSMEYsvCmRPI4oDEIbtjO46Ty0qoKmWlIiTUu-U4k-LKtYudFvrvcWm1BS57smV_82bevKJ4TeGGguS3W6_TDdTQCGgp8CfFhOZLWVctPC0mAEyWTcWqq-JFSmsAaEUDz4srKinQtoFJcZgHt7Jk-dP6RKwnCz0i-WLHkGwi33CP2mFPugOZo8fRGu3cgcy8CX1-XupVIkOIZGH3SKboHLnf6JX1K6J9T6YhRnRZsCczh2aMwWdpE0MyYXt4WTwbtEv46nxeF8tPs-X0c7n4Or-fflyURrT1WKLRtaa07wcUkkrIcxvGGmaaAVsmK0N1i5VB0XHR9x2VWtJOaNkxpHrg_Lq4O8lud90Ge4N-jNqpbbQbHQ8qaKv-_fH2u1qFvaI1F62UWeD9WSCGHztMo9rYZLJX7THskqob2kDN-KMgbQVQ0bAMvvsPXIdd9HkJigHlbQ7z2Pb2BB33lSIODyNTUMfs1TF7dck-V7z92-mFP4edAXIGjpUXOa4qmSn5x-yHRxA17Jwb8deY2Tcndp3GEB9gDiCY4C3_Dekjzks</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201398507</pqid></control><display><type>article</type><title>Golgi Twins in Late Mitosis Revealed by Genetically Encoded Tags for Live Cell Imaging and Correlated Electron Microscopy</title><source>PubMed Central</source><source>JSTOR</source><creator>Gaietta, Guido M. ; Giepmans, Ben N. G. ; Deerinck, Thomas J. ; Smith, W. Bryan ; Ngan, Lucy ; Llopis, Juan ; Adams, Stephen R. ; Tsien, Roger Y. ; Ellisman, Mark H.</creator><creatorcontrib>Gaietta, Guido M. ; Giepmans, Ben N. G. ; Deerinck, Thomas J. ; Smith, W. Bryan ; Ngan, Lucy ; Llopis, Juan ; Adams, Stephen R. ; Tsien, Roger Y. ; Ellisman, Mark H.</creatorcontrib><description>Combinations of molecular tags visible in light and electron microscopes become particularly advantageous in the analysis of dynamic cellular components like the Golgi apparatus. This organelle disassembles at the onset of mitosis and, after a sequence of poorly understood events, reassembles after cytokinesis. The precise location of Golgi membranes and resident proteins during mitosis remains unclear, partly due to limitations of molecular markers and the resolution of light microscopy. We generated a fusion consisting of the first 117 residues of α-mannosidase II tagged with a fluorescent protein and a tetracysteine motif. The mannosidase component guarantees docking into the Golgi membrane, with the tags exposed in the lumen. The fluorescent protein is optically visible without further treatment, whereas the tetracysteine tag can be reduced acutely with a membrane-permeant phosphine, labeled with ReAsH, monitored in the light microscope, and used to trigger the photoconversion of diaminobenzidine, allowing 4D optical recording on live cells and correlated ultrastructural analysis by electron microscopy. These methods reveal that Golgi reassembly is preceded by the formation of four colinear clusters at telophase, two per daughter cell. Within each daughter, the smaller cluster near the midbody gradually migrates to rejoin the major cluster on the far side of the nucleus and asymmetrically reconstitutes a single Golgi apparatus, first in one daughter cell and then in the other. Our studies provide previously undescribed insights into Golgi disassociation and reassembly during mitosis and offer a powerful approach to follow recombinant protein distribution in 4D imaging and correlated high-resolution analysis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0608509103</identifier><identifier>PMID: 17101980</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>alpha-Mannosidase - genetics ; alpha-Mannosidase - metabolism ; Biological Sciences ; Cell division ; Cysteine - genetics ; Cysteine - metabolism ; Cytokines ; Cytokinesis ; Daughter cells ; Electron microscopes ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum - ultrastructure ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Fluorescent Dyes - metabolism ; Golgi apparatus ; Golgi Apparatus - metabolism ; Golgi Apparatus - ultrastructure ; HeLa Cells ; Humans ; Imaging ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Membranes ; Microscopy ; Microscopy, Electron - instrumentation ; Microscopy, Electron - methods ; Mitosis ; Mitosis - physiology ; Oxidation-Reduction ; Peptides - genetics ; Peptides - metabolism ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Staining and Labeling - methods ; Telophase</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-11, Vol.103 (47), p.17777-17782</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 21, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33</citedby><cites>FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30052539$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30052539$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17101980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaietta, Guido M.</creatorcontrib><creatorcontrib>Giepmans, Ben N. G.</creatorcontrib><creatorcontrib>Deerinck, Thomas J.</creatorcontrib><creatorcontrib>Smith, W. Bryan</creatorcontrib><creatorcontrib>Ngan, Lucy</creatorcontrib><creatorcontrib>Llopis, Juan</creatorcontrib><creatorcontrib>Adams, Stephen R.</creatorcontrib><creatorcontrib>Tsien, Roger Y.</creatorcontrib><creatorcontrib>Ellisman, Mark H.</creatorcontrib><title>Golgi Twins in Late Mitosis Revealed by Genetically Encoded Tags for Live Cell Imaging and Correlated Electron Microscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Combinations of molecular tags visible in light and electron microscopes become particularly advantageous in the analysis of dynamic cellular components like the Golgi apparatus. This organelle disassembles at the onset of mitosis and, after a sequence of poorly understood events, reassembles after cytokinesis. The precise location of Golgi membranes and resident proteins during mitosis remains unclear, partly due to limitations of molecular markers and the resolution of light microscopy. We generated a fusion consisting of the first 117 residues of α-mannosidase II tagged with a fluorescent protein and a tetracysteine motif. The mannosidase component guarantees docking into the Golgi membrane, with the tags exposed in the lumen. The fluorescent protein is optically visible without further treatment, whereas the tetracysteine tag can be reduced acutely with a membrane-permeant phosphine, labeled with ReAsH, monitored in the light microscope, and used to trigger the photoconversion of diaminobenzidine, allowing 4D optical recording on live cells and correlated ultrastructural analysis by electron microscopy. These methods reveal that Golgi reassembly is preceded by the formation of four colinear clusters at telophase, two per daughter cell. Within each daughter, the smaller cluster near the midbody gradually migrates to rejoin the major cluster on the far side of the nucleus and asymmetrically reconstitutes a single Golgi apparatus, first in one daughter cell and then in the other. Our studies provide previously undescribed insights into Golgi disassociation and reassembly during mitosis and offer a powerful approach to follow recombinant protein distribution in 4D imaging and correlated high-resolution analysis.</description><subject>alpha-Mannosidase - genetics</subject><subject>alpha-Mannosidase - metabolism</subject><subject>Biological Sciences</subject><subject>Cell division</subject><subject>Cysteine - genetics</subject><subject>Cysteine - metabolism</subject><subject>Cytokines</subject><subject>Cytokinesis</subject><subject>Daughter cells</subject><subject>Electron microscopes</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum - ultrastructure</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - metabolism</subject><subject>Golgi Apparatus - ultrastructure</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Imaging</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Microscopy, Electron - instrumentation</subject><subject>Microscopy, Electron - methods</subject><subject>Mitosis</subject><subject>Mitosis - physiology</subject><subject>Oxidation-Reduction</subject><subject>Peptides - genetics</subject><subject>Peptides - metabolism</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Staining and Labeling - methods</subject><subject>Telophase</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkUGP0zAQhSMEYsvCmRPI4oDEIbtjO46Ty0qoKmWlIiTUu-U4k-LKtYudFvrvcWm1BS57smV_82bevKJ4TeGGguS3W6_TDdTQCGgp8CfFhOZLWVctPC0mAEyWTcWqq-JFSmsAaEUDz4srKinQtoFJcZgHt7Jk-dP6RKwnCz0i-WLHkGwi33CP2mFPugOZo8fRGu3cgcy8CX1-XupVIkOIZGH3SKboHLnf6JX1K6J9T6YhRnRZsCczh2aMwWdpE0MyYXt4WTwbtEv46nxeF8tPs-X0c7n4Or-fflyURrT1WKLRtaa07wcUkkrIcxvGGmaaAVsmK0N1i5VB0XHR9x2VWtJOaNkxpHrg_Lq4O8lud90Ge4N-jNqpbbQbHQ8qaKv-_fH2u1qFvaI1F62UWeD9WSCGHztMo9rYZLJX7THskqob2kDN-KMgbQVQ0bAMvvsPXIdd9HkJigHlbQ7z2Pb2BB33lSIODyNTUMfs1TF7dck-V7z92-mFP4edAXIGjpUXOa4qmSn5x-yHRxA17Jwb8deY2Tcndp3GEB9gDiCY4C3_Dekjzks</recordid><startdate>20061121</startdate><enddate>20061121</enddate><creator>Gaietta, Guido M.</creator><creator>Giepmans, Ben N. G.</creator><creator>Deerinck, Thomas J.</creator><creator>Smith, W. Bryan</creator><creator>Ngan, Lucy</creator><creator>Llopis, Juan</creator><creator>Adams, Stephen R.</creator><creator>Tsien, Roger Y.</creator><creator>Ellisman, Mark H.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061121</creationdate><title>Golgi Twins in Late Mitosis Revealed by Genetically Encoded Tags for Live Cell Imaging and Correlated Electron Microscopy</title><author>Gaietta, Guido M. ; Giepmans, Ben N. G. ; Deerinck, Thomas J. ; Smith, W. Bryan ; Ngan, Lucy ; Llopis, Juan ; Adams, Stephen R. ; Tsien, Roger Y. ; Ellisman, Mark H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>alpha-Mannosidase - genetics</topic><topic>alpha-Mannosidase - metabolism</topic><topic>Biological Sciences</topic><topic>Cell division</topic><topic>Cysteine - genetics</topic><topic>Cysteine - metabolism</topic><topic>Cytokines</topic><topic>Cytokinesis</topic><topic>Daughter cells</topic><topic>Electron microscopes</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum - ultrastructure</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - metabolism</topic><topic>Golgi Apparatus - ultrastructure</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Imaging</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Microscopy, Electron - instrumentation</topic><topic>Microscopy, Electron - methods</topic><topic>Mitosis</topic><topic>Mitosis - physiology</topic><topic>Oxidation-Reduction</topic><topic>Peptides - genetics</topic><topic>Peptides - metabolism</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Staining and Labeling - methods</topic><topic>Telophase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaietta, Guido M.</creatorcontrib><creatorcontrib>Giepmans, Ben N. G.</creatorcontrib><creatorcontrib>Deerinck, Thomas J.</creatorcontrib><creatorcontrib>Smith, W. Bryan</creatorcontrib><creatorcontrib>Ngan, Lucy</creatorcontrib><creatorcontrib>Llopis, Juan</creatorcontrib><creatorcontrib>Adams, Stephen R.</creatorcontrib><creatorcontrib>Tsien, Roger Y.</creatorcontrib><creatorcontrib>Ellisman, Mark H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaietta, Guido M.</au><au>Giepmans, Ben N. G.</au><au>Deerinck, Thomas J.</au><au>Smith, W. Bryan</au><au>Ngan, Lucy</au><au>Llopis, Juan</au><au>Adams, Stephen R.</au><au>Tsien, Roger Y.</au><au>Ellisman, Mark H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Golgi Twins in Late Mitosis Revealed by Genetically Encoded Tags for Live Cell Imaging and Correlated Electron Microscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-11-21</date><risdate>2006</risdate><volume>103</volume><issue>47</issue><spage>17777</spage><epage>17782</epage><pages>17777-17782</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Combinations of molecular tags visible in light and electron microscopes become particularly advantageous in the analysis of dynamic cellular components like the Golgi apparatus. This organelle disassembles at the onset of mitosis and, after a sequence of poorly understood events, reassembles after cytokinesis. The precise location of Golgi membranes and resident proteins during mitosis remains unclear, partly due to limitations of molecular markers and the resolution of light microscopy. We generated a fusion consisting of the first 117 residues of α-mannosidase II tagged with a fluorescent protein and a tetracysteine motif. The mannosidase component guarantees docking into the Golgi membrane, with the tags exposed in the lumen. The fluorescent protein is optically visible without further treatment, whereas the tetracysteine tag can be reduced acutely with a membrane-permeant phosphine, labeled with ReAsH, monitored in the light microscope, and used to trigger the photoconversion of diaminobenzidine, allowing 4D optical recording on live cells and correlated ultrastructural analysis by electron microscopy. These methods reveal that Golgi reassembly is preceded by the formation of four colinear clusters at telophase, two per daughter cell. Within each daughter, the smaller cluster near the midbody gradually migrates to rejoin the major cluster on the far side of the nucleus and asymmetrically reconstitutes a single Golgi apparatus, first in one daughter cell and then in the other. Our studies provide previously undescribed insights into Golgi disassociation and reassembly during mitosis and offer a powerful approach to follow recombinant protein distribution in 4D imaging and correlated high-resolution analysis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17101980</pmid><doi>10.1073/pnas.0608509103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-11, Vol.103 (47), p.17777-17782
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_68180623
source PubMed Central; JSTOR
subjects alpha-Mannosidase - genetics
alpha-Mannosidase - metabolism
Biological Sciences
Cell division
Cysteine - genetics
Cysteine - metabolism
Cytokines
Cytokinesis
Daughter cells
Electron microscopes
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum - ultrastructure
Fluorescence
Fluorescence Resonance Energy Transfer
Fluorescent Dyes - metabolism
Golgi apparatus
Golgi Apparatus - metabolism
Golgi Apparatus - ultrastructure
HeLa Cells
Humans
Imaging
Isoenzymes - genetics
Isoenzymes - metabolism
Membranes
Microscopy
Microscopy, Electron - instrumentation
Microscopy, Electron - methods
Mitosis
Mitosis - physiology
Oxidation-Reduction
Peptides - genetics
Peptides - metabolism
Proteins
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Staining and Labeling - methods
Telophase
title Golgi Twins in Late Mitosis Revealed by Genetically Encoded Tags for Live Cell Imaging and Correlated Electron Microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Golgi%20Twins%20in%20Late%20Mitosis%20Revealed%20by%20Genetically%20Encoded%20Tags%20for%20Live%20Cell%20Imaging%20and%20Correlated%20Electron%20Microscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gaietta,%20Guido%20M.&rft.date=2006-11-21&rft.volume=103&rft.issue=47&rft.spage=17777&rft.epage=17782&rft.pages=17777-17782&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0608509103&rft_dat=%3Cjstor_proqu%3E30052539%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201398507&rft_id=info:pmid/17101980&rft_jstor_id=30052539&rfr_iscdi=true