Loading…
Golgi Twins in Late Mitosis Revealed by Genetically Encoded Tags for Live Cell Imaging and Correlated Electron Microscopy
Combinations of molecular tags visible in light and electron microscopes become particularly advantageous in the analysis of dynamic cellular components like the Golgi apparatus. This organelle disassembles at the onset of mitosis and, after a sequence of poorly understood events, reassembles after...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2006-11, Vol.103 (47), p.17777-17782 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33 |
---|---|
cites | cdi_FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33 |
container_end_page | 17782 |
container_issue | 47 |
container_start_page | 17777 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 103 |
creator | Gaietta, Guido M. Giepmans, Ben N. G. Deerinck, Thomas J. Smith, W. Bryan Ngan, Lucy Llopis, Juan Adams, Stephen R. Tsien, Roger Y. Ellisman, Mark H. |
description | Combinations of molecular tags visible in light and electron microscopes become particularly advantageous in the analysis of dynamic cellular components like the Golgi apparatus. This organelle disassembles at the onset of mitosis and, after a sequence of poorly understood events, reassembles after cytokinesis. The precise location of Golgi membranes and resident proteins during mitosis remains unclear, partly due to limitations of molecular markers and the resolution of light microscopy. We generated a fusion consisting of the first 117 residues of α-mannosidase II tagged with a fluorescent protein and a tetracysteine motif. The mannosidase component guarantees docking into the Golgi membrane, with the tags exposed in the lumen. The fluorescent protein is optically visible without further treatment, whereas the tetracysteine tag can be reduced acutely with a membrane-permeant phosphine, labeled with ReAsH, monitored in the light microscope, and used to trigger the photoconversion of diaminobenzidine, allowing 4D optical recording on live cells and correlated ultrastructural analysis by electron microscopy. These methods reveal that Golgi reassembly is preceded by the formation of four colinear clusters at telophase, two per daughter cell. Within each daughter, the smaller cluster near the midbody gradually migrates to rejoin the major cluster on the far side of the nucleus and asymmetrically reconstitutes a single Golgi apparatus, first in one daughter cell and then in the other. Our studies provide previously undescribed insights into Golgi disassociation and reassembly during mitosis and offer a powerful approach to follow recombinant protein distribution in 4D imaging and correlated high-resolution analysis. |
doi_str_mv | 10.1073/pnas.0608509103 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68180623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30052539</jstor_id><sourcerecordid>30052539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33</originalsourceid><addsrcrecordid>eNqFkUGP0zAQhSMEYsvCmRPI4oDEIbtjO46Ty0qoKmWlIiTUu-U4k-LKtYudFvrvcWm1BS57smV_82bevKJ4TeGGguS3W6_TDdTQCGgp8CfFhOZLWVctPC0mAEyWTcWqq-JFSmsAaEUDz4srKinQtoFJcZgHt7Jk-dP6RKwnCz0i-WLHkGwi33CP2mFPugOZo8fRGu3cgcy8CX1-XupVIkOIZGH3SKboHLnf6JX1K6J9T6YhRnRZsCczh2aMwWdpE0MyYXt4WTwbtEv46nxeF8tPs-X0c7n4Or-fflyURrT1WKLRtaa07wcUkkrIcxvGGmaaAVsmK0N1i5VB0XHR9x2VWtJOaNkxpHrg_Lq4O8lud90Ge4N-jNqpbbQbHQ8qaKv-_fH2u1qFvaI1F62UWeD9WSCGHztMo9rYZLJX7THskqob2kDN-KMgbQVQ0bAMvvsPXIdd9HkJigHlbQ7z2Pb2BB33lSIODyNTUMfs1TF7dck-V7z92-mFP4edAXIGjpUXOa4qmSn5x-yHRxA17Jwb8deY2Tcndp3GEB9gDiCY4C3_Dekjzks</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201398507</pqid></control><display><type>article</type><title>Golgi Twins in Late Mitosis Revealed by Genetically Encoded Tags for Live Cell Imaging and Correlated Electron Microscopy</title><source>PubMed Central</source><source>JSTOR</source><creator>Gaietta, Guido M. ; Giepmans, Ben N. G. ; Deerinck, Thomas J. ; Smith, W. Bryan ; Ngan, Lucy ; Llopis, Juan ; Adams, Stephen R. ; Tsien, Roger Y. ; Ellisman, Mark H.</creator><creatorcontrib>Gaietta, Guido M. ; Giepmans, Ben N. G. ; Deerinck, Thomas J. ; Smith, W. Bryan ; Ngan, Lucy ; Llopis, Juan ; Adams, Stephen R. ; Tsien, Roger Y. ; Ellisman, Mark H.</creatorcontrib><description>Combinations of molecular tags visible in light and electron microscopes become particularly advantageous in the analysis of dynamic cellular components like the Golgi apparatus. This organelle disassembles at the onset of mitosis and, after a sequence of poorly understood events, reassembles after cytokinesis. The precise location of Golgi membranes and resident proteins during mitosis remains unclear, partly due to limitations of molecular markers and the resolution of light microscopy. We generated a fusion consisting of the first 117 residues of α-mannosidase II tagged with a fluorescent protein and a tetracysteine motif. The mannosidase component guarantees docking into the Golgi membrane, with the tags exposed in the lumen. The fluorescent protein is optically visible without further treatment, whereas the tetracysteine tag can be reduced acutely with a membrane-permeant phosphine, labeled with ReAsH, monitored in the light microscope, and used to trigger the photoconversion of diaminobenzidine, allowing 4D optical recording on live cells and correlated ultrastructural analysis by electron microscopy. These methods reveal that Golgi reassembly is preceded by the formation of four colinear clusters at telophase, two per daughter cell. Within each daughter, the smaller cluster near the midbody gradually migrates to rejoin the major cluster on the far side of the nucleus and asymmetrically reconstitutes a single Golgi apparatus, first in one daughter cell and then in the other. Our studies provide previously undescribed insights into Golgi disassociation and reassembly during mitosis and offer a powerful approach to follow recombinant protein distribution in 4D imaging and correlated high-resolution analysis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0608509103</identifier><identifier>PMID: 17101980</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>alpha-Mannosidase - genetics ; alpha-Mannosidase - metabolism ; Biological Sciences ; Cell division ; Cysteine - genetics ; Cysteine - metabolism ; Cytokines ; Cytokinesis ; Daughter cells ; Electron microscopes ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum - ultrastructure ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Fluorescent Dyes - metabolism ; Golgi apparatus ; Golgi Apparatus - metabolism ; Golgi Apparatus - ultrastructure ; HeLa Cells ; Humans ; Imaging ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Membranes ; Microscopy ; Microscopy, Electron - instrumentation ; Microscopy, Electron - methods ; Mitosis ; Mitosis - physiology ; Oxidation-Reduction ; Peptides - genetics ; Peptides - metabolism ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Staining and Labeling - methods ; Telophase</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-11, Vol.103 (47), p.17777-17782</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 21, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33</citedby><cites>FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30052539$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30052539$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17101980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaietta, Guido M.</creatorcontrib><creatorcontrib>Giepmans, Ben N. G.</creatorcontrib><creatorcontrib>Deerinck, Thomas J.</creatorcontrib><creatorcontrib>Smith, W. Bryan</creatorcontrib><creatorcontrib>Ngan, Lucy</creatorcontrib><creatorcontrib>Llopis, Juan</creatorcontrib><creatorcontrib>Adams, Stephen R.</creatorcontrib><creatorcontrib>Tsien, Roger Y.</creatorcontrib><creatorcontrib>Ellisman, Mark H.</creatorcontrib><title>Golgi Twins in Late Mitosis Revealed by Genetically Encoded Tags for Live Cell Imaging and Correlated Electron Microscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Combinations of molecular tags visible in light and electron microscopes become particularly advantageous in the analysis of dynamic cellular components like the Golgi apparatus. This organelle disassembles at the onset of mitosis and, after a sequence of poorly understood events, reassembles after cytokinesis. The precise location of Golgi membranes and resident proteins during mitosis remains unclear, partly due to limitations of molecular markers and the resolution of light microscopy. We generated a fusion consisting of the first 117 residues of α-mannosidase II tagged with a fluorescent protein and a tetracysteine motif. The mannosidase component guarantees docking into the Golgi membrane, with the tags exposed in the lumen. The fluorescent protein is optically visible without further treatment, whereas the tetracysteine tag can be reduced acutely with a membrane-permeant phosphine, labeled with ReAsH, monitored in the light microscope, and used to trigger the photoconversion of diaminobenzidine, allowing 4D optical recording on live cells and correlated ultrastructural analysis by electron microscopy. These methods reveal that Golgi reassembly is preceded by the formation of four colinear clusters at telophase, two per daughter cell. Within each daughter, the smaller cluster near the midbody gradually migrates to rejoin the major cluster on the far side of the nucleus and asymmetrically reconstitutes a single Golgi apparatus, first in one daughter cell and then in the other. Our studies provide previously undescribed insights into Golgi disassociation and reassembly during mitosis and offer a powerful approach to follow recombinant protein distribution in 4D imaging and correlated high-resolution analysis.</description><subject>alpha-Mannosidase - genetics</subject><subject>alpha-Mannosidase - metabolism</subject><subject>Biological Sciences</subject><subject>Cell division</subject><subject>Cysteine - genetics</subject><subject>Cysteine - metabolism</subject><subject>Cytokines</subject><subject>Cytokinesis</subject><subject>Daughter cells</subject><subject>Electron microscopes</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum - ultrastructure</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - metabolism</subject><subject>Golgi Apparatus - ultrastructure</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Imaging</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Microscopy, Electron - instrumentation</subject><subject>Microscopy, Electron - methods</subject><subject>Mitosis</subject><subject>Mitosis - physiology</subject><subject>Oxidation-Reduction</subject><subject>Peptides - genetics</subject><subject>Peptides - metabolism</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Staining and Labeling - methods</subject><subject>Telophase</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkUGP0zAQhSMEYsvCmRPI4oDEIbtjO46Ty0qoKmWlIiTUu-U4k-LKtYudFvrvcWm1BS57smV_82bevKJ4TeGGguS3W6_TDdTQCGgp8CfFhOZLWVctPC0mAEyWTcWqq-JFSmsAaEUDz4srKinQtoFJcZgHt7Jk-dP6RKwnCz0i-WLHkGwi33CP2mFPugOZo8fRGu3cgcy8CX1-XupVIkOIZGH3SKboHLnf6JX1K6J9T6YhRnRZsCczh2aMwWdpE0MyYXt4WTwbtEv46nxeF8tPs-X0c7n4Or-fflyURrT1WKLRtaa07wcUkkrIcxvGGmaaAVsmK0N1i5VB0XHR9x2VWtJOaNkxpHrg_Lq4O8lud90Ge4N-jNqpbbQbHQ8qaKv-_fH2u1qFvaI1F62UWeD9WSCGHztMo9rYZLJX7THskqob2kDN-KMgbQVQ0bAMvvsPXIdd9HkJigHlbQ7z2Pb2BB33lSIODyNTUMfs1TF7dck-V7z92-mFP4edAXIGjpUXOa4qmSn5x-yHRxA17Jwb8deY2Tcndp3GEB9gDiCY4C3_Dekjzks</recordid><startdate>20061121</startdate><enddate>20061121</enddate><creator>Gaietta, Guido M.</creator><creator>Giepmans, Ben N. G.</creator><creator>Deerinck, Thomas J.</creator><creator>Smith, W. Bryan</creator><creator>Ngan, Lucy</creator><creator>Llopis, Juan</creator><creator>Adams, Stephen R.</creator><creator>Tsien, Roger Y.</creator><creator>Ellisman, Mark H.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061121</creationdate><title>Golgi Twins in Late Mitosis Revealed by Genetically Encoded Tags for Live Cell Imaging and Correlated Electron Microscopy</title><author>Gaietta, Guido M. ; Giepmans, Ben N. G. ; Deerinck, Thomas J. ; Smith, W. Bryan ; Ngan, Lucy ; Llopis, Juan ; Adams, Stephen R. ; Tsien, Roger Y. ; Ellisman, Mark H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>alpha-Mannosidase - genetics</topic><topic>alpha-Mannosidase - metabolism</topic><topic>Biological Sciences</topic><topic>Cell division</topic><topic>Cysteine - genetics</topic><topic>Cysteine - metabolism</topic><topic>Cytokines</topic><topic>Cytokinesis</topic><topic>Daughter cells</topic><topic>Electron microscopes</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum - ultrastructure</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - metabolism</topic><topic>Golgi Apparatus - ultrastructure</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Imaging</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Microscopy, Electron - instrumentation</topic><topic>Microscopy, Electron - methods</topic><topic>Mitosis</topic><topic>Mitosis - physiology</topic><topic>Oxidation-Reduction</topic><topic>Peptides - genetics</topic><topic>Peptides - metabolism</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Staining and Labeling - methods</topic><topic>Telophase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaietta, Guido M.</creatorcontrib><creatorcontrib>Giepmans, Ben N. G.</creatorcontrib><creatorcontrib>Deerinck, Thomas J.</creatorcontrib><creatorcontrib>Smith, W. Bryan</creatorcontrib><creatorcontrib>Ngan, Lucy</creatorcontrib><creatorcontrib>Llopis, Juan</creatorcontrib><creatorcontrib>Adams, Stephen R.</creatorcontrib><creatorcontrib>Tsien, Roger Y.</creatorcontrib><creatorcontrib>Ellisman, Mark H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaietta, Guido M.</au><au>Giepmans, Ben N. G.</au><au>Deerinck, Thomas J.</au><au>Smith, W. Bryan</au><au>Ngan, Lucy</au><au>Llopis, Juan</au><au>Adams, Stephen R.</au><au>Tsien, Roger Y.</au><au>Ellisman, Mark H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Golgi Twins in Late Mitosis Revealed by Genetically Encoded Tags for Live Cell Imaging and Correlated Electron Microscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-11-21</date><risdate>2006</risdate><volume>103</volume><issue>47</issue><spage>17777</spage><epage>17782</epage><pages>17777-17782</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Combinations of molecular tags visible in light and electron microscopes become particularly advantageous in the analysis of dynamic cellular components like the Golgi apparatus. This organelle disassembles at the onset of mitosis and, after a sequence of poorly understood events, reassembles after cytokinesis. The precise location of Golgi membranes and resident proteins during mitosis remains unclear, partly due to limitations of molecular markers and the resolution of light microscopy. We generated a fusion consisting of the first 117 residues of α-mannosidase II tagged with a fluorescent protein and a tetracysteine motif. The mannosidase component guarantees docking into the Golgi membrane, with the tags exposed in the lumen. The fluorescent protein is optically visible without further treatment, whereas the tetracysteine tag can be reduced acutely with a membrane-permeant phosphine, labeled with ReAsH, monitored in the light microscope, and used to trigger the photoconversion of diaminobenzidine, allowing 4D optical recording on live cells and correlated ultrastructural analysis by electron microscopy. These methods reveal that Golgi reassembly is preceded by the formation of four colinear clusters at telophase, two per daughter cell. Within each daughter, the smaller cluster near the midbody gradually migrates to rejoin the major cluster on the far side of the nucleus and asymmetrically reconstitutes a single Golgi apparatus, first in one daughter cell and then in the other. Our studies provide previously undescribed insights into Golgi disassociation and reassembly during mitosis and offer a powerful approach to follow recombinant protein distribution in 4D imaging and correlated high-resolution analysis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17101980</pmid><doi>10.1073/pnas.0608509103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2006-11, Vol.103 (47), p.17777-17782 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_68180623 |
source | PubMed Central; JSTOR |
subjects | alpha-Mannosidase - genetics alpha-Mannosidase - metabolism Biological Sciences Cell division Cysteine - genetics Cysteine - metabolism Cytokines Cytokinesis Daughter cells Electron microscopes Endoplasmic Reticulum - metabolism Endoplasmic Reticulum - ultrastructure Fluorescence Fluorescence Resonance Energy Transfer Fluorescent Dyes - metabolism Golgi apparatus Golgi Apparatus - metabolism Golgi Apparatus - ultrastructure HeLa Cells Humans Imaging Isoenzymes - genetics Isoenzymes - metabolism Membranes Microscopy Microscopy, Electron - instrumentation Microscopy, Electron - methods Mitosis Mitosis - physiology Oxidation-Reduction Peptides - genetics Peptides - metabolism Proteins Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Staining and Labeling - methods Telophase |
title | Golgi Twins in Late Mitosis Revealed by Genetically Encoded Tags for Live Cell Imaging and Correlated Electron Microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Golgi%20Twins%20in%20Late%20Mitosis%20Revealed%20by%20Genetically%20Encoded%20Tags%20for%20Live%20Cell%20Imaging%20and%20Correlated%20Electron%20Microscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gaietta,%20Guido%20M.&rft.date=2006-11-21&rft.volume=103&rft.issue=47&rft.spage=17777&rft.epage=17782&rft.pages=17777-17782&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0608509103&rft_dat=%3Cjstor_proqu%3E30052539%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c596t-eca6a11ddfe57170019c2282c8fe9274c1a9e4ce5b35ddb17a71b5a7b2e1af33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201398507&rft_id=info:pmid/17101980&rft_jstor_id=30052539&rfr_iscdi=true |