Loading…

Engineering of efficient phosphorescent iridium cationic complex for developing oxygen-sensitive polymeric and nanostructured films

In this study, a novel phosphorescent Ir(III) complex [Ir(2-phenylpyridine)2(4,4'-bis(2-(4-N,N-methylhexylaminophenyl)ethyl)-2-2'-bipyridine)Cl] (for convenience, the complex was given the synonym N-948) has been designed and synthesized, to be used as an oxygen probe. It was characterized...

Full description

Saved in:
Bibliographic Details
Published in:Analyst (London) 2007-01, Vol.132 (9), p.929-936
Main Authors: MEDINA-CASTILLO, Antonio L, FERNANDEZ-SANCHEZ, Jorge F, KLEIN, CĂ©dric, NAZEERUDDIN, Mohammad K, SEGURA-CARRETERO, Antonio, FERNANDEZ -GUTIERREZ, Alberto, GRAETZEL, Michael, SPICHIGER-KELLER, Ursula E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a novel phosphorescent Ir(III) complex [Ir(2-phenylpyridine)2(4,4'-bis(2-(4-N,N-methylhexylaminophenyl)ethyl)-2-2'-bipyridine)Cl] (for convenience, the complex was given the synonym N-948) has been designed and synthesized, to be used as an oxygen probe. It was characterized by spectroscopic and analytical methods when incorporated in a polystyrene and nanostructured metal oxide support. N-948 is the first Ir complex in the literature with a luminescence emission at a wavelength higher than 650 nm (665 nm), with a quantum yield higher than 0.50 (0.58 +/- 0.05) and an extremely long phosphorescence lifetime (102 micros) which has been used for developing oxygen-sensitive films. In addition, the new complex shows a Stern-Volmer constant which is 20 times higher than that of other Ir complexes known from the literature when they are immobilized in polystyrene. The sensing film shows long-term stability (up to 12 months), complete reversibility of the signal quenched by oxygen and a quick response time to various oxygen concentrations (
ISSN:0003-2654
1364-5528
DOI:10.1039/b702628e