Loading…
Meningococcal biofilm formation: structure, development and phenotypes in a standardized continuous flow system
Summary We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strai...
Saved in:
Published in: | Molecular microbiology 2006-12, Vol.62 (5), p.1292-1309 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains, microcolony formation within biofilms was observed. Microcolony formation in strain MC58 depended on a functional copy of the pilE gene encoding the pilus subunit pilin, and was associated with twitching of cells. Nevertheless, unpiliated pilE mutants formed biofilms showing that attachment and accumulation of cells did not depend on pilus expression. Mutation and complementation analysis revealed that the type IV pilus‐associated protein PilX, which was recently shown to mediate interbacterial aggregation, indirectly supported microcolony formation by contributing to pilus expression. A large number of PilX alleles was identified among genetically diverse meningococcal strains. PilX alleles differed in their propensity to support autoaggregation of cells in suspension, but not in their ability to support microcolony formation within biofilms in the continuous flow system. |
---|---|
ISSN: | 0950-382X 1365-2958 |
DOI: | 10.1111/j.1365-2958.2006.05448.x |