Loading…
Neurons in motion: same principles for different shapes?
The special conformation of the developing nervous system, in which progenitor zones are largely confined to the lumen of the neural tube, places neuronal migration as one of the most fundamental processes in brain development. Previous studies have shown that different neuronal types adopt distinct...
Saved in:
Published in: | Trends in neurosciences (Regular ed.) 2006-12, Vol.29 (12), p.655-661 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The special conformation of the developing nervous system, in which progenitor zones are largely confined to the lumen of the neural tube, places neuronal migration as one of the most fundamental processes in brain development. Previous studies have shown that different neuronal types adopt distinct morphological modes of migration in the developing brain, indicating that neuronal migration might be a diverse process. Here, we review recent data on the molecular mechanisms underlying neuronal migration that suggest that similar signaling principles are responsible for the frequently variable morphology of different types of migrating neuron. According to this idea, the same basic molecular mechanisms found in other cell types, such as fibroblasts, might have been adapted to the special morphological needs of migrating neurons in different regions of the developing brain. |
---|---|
ISSN: | 0166-2236 1878-108X |
DOI: | 10.1016/j.tins.2006.10.001 |