Loading…
Analysis of Gene Expression in the Tumor-Associated Macrophage
Introduction The tumor-associated macrophage (TAM) is at the front line of the host’s defense against malignancy and provides an attractive target for immune-modulatory therapy. However, factors present within the tumor microenvironment can alter macrophage phenotype, preventing its cytotoxic activi...
Saved in:
Published in: | The Journal of surgical research 2007-09, Vol.142 (1), p.119-128 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction The tumor-associated macrophage (TAM) is at the front line of the host’s defense against malignancy and provides an attractive target for immune-modulatory therapy. However, factors present within the tumor microenvironment can alter macrophage phenotype, preventing its cytotoxic activity and reducing its susceptibility to interferon-γ and lipopolysaccharide-mediated stimulation. Methods Macrophages were isolated from subcutaneous B16 melanoma tumors implanted in C57 BL/6 mice. Wound macrophages were harvested from subcutaneously-implanted PVA sponges, and resting peritoneal macrophages were harvested by peritoneal lavage. Gene expression was analyzed using an Atlas cDNA array (Clontech, Mountain View, CA). Results TAM demonstrated a pattern of gene expression distinct from both wound and peritoneal macrophage. There is an increase in proliferation-associated genes and in genes encoding the ultrastructural proteins cofillin, zyxin, and vimentin more commonly associated with fibroblast-like cells. In addition, an observed decrease in expression of the CD14 gene, and increase in inhibitory pathways including osteopontin and its receptor CD44, the inositol 1,4,5-triphosphate receptor, and the receptors for interleukin-4 and granulocyte monocyte-colony stimulating factor could explain the resistance of TAM to lipopolysaccharide-mediated stimulation. There was also a significant decrease in the expression of the interferon-γ second messenger, IRF-1. Conclusions This study has identified a number of pathways involved in the suppression of TAM function. Targeting of these pathways may allow for the generation of more effective immune-modulatory anti-neoplastic therapy. |
---|---|
ISSN: | 0022-4804 1095-8673 |
DOI: | 10.1016/j.jss.2006.12.542 |