Loading…
Using image processing to detect and classify narrow-band cricket and frog calls
An automatic call recognition (ACR) process is described that uses image processing techniques on spectrogram images to detect and classify constant-frequency cricket and frog calls recorded amidst a background of evening sounds found in a lowland Costa Rican rainforest. This process involves using...
Saved in:
Published in: | The Journal of the Acoustical Society of America 2006-11, Vol.120 (5), p.2950-2957 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833 |
container_end_page | 2957 |
container_issue | 5 |
container_start_page | 2950 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 120 |
creator | Brandes, T. Scott Naskrecki, Piotr Figueroa, Harold K. |
description | An automatic call recognition (ACR) process is described that uses image processing techniques on spectrogram images to detect and classify constant-frequency cricket and frog calls recorded amidst a background of evening sounds found in a lowland Costa Rican rainforest. This process involves using image blur filters along with thresholding filters to isolate likely calling events. Features of these events, notably the event's central frequency, duration and bandwidth, along with the type of blur filter applied, are used with a Bayesian classifier to make identifications of the different calls. Of the 22 distinct sonotypes (calls presumed to be species-specific) recorded in the study site, 17 of them were recorded in high enough numbers to both train and test the classifier. The classifier approaches 100% true-positive accuracy for these 17 sonotypes, but also has a high false-negative rate (over 50% for 4 sonotypes). The very high true-positive accuracy of this process enables its use for monitoring singing crickets (and some frog species) in tropical forests. |
doi_str_mv | 10.1121/1.2355479 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68199791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68199791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYMozji68A9INwouOuYmTZNsBBl8wYAunHVI02SodlpNOsj8e2NbmZWryz183Mc5CJ0DngMQuIE5oYxlXB6gKTCCU8FIdoimGGNIM5nnE3QSwntsmaDyGE2AA5WcwRS9rkLVrJNqo9c2-fStsaEXujYpbWdNl-imTEyto-x2SaO9b7_Tohd9ZT7sADjfrhOj6zqcoiOn62DPxjpDq4f7t8VTunx5fF7cLVNDc9GljOelkJQLB05zjaWmGbVFTm1USWZyS6gERsHhTHNJHKVCc1aUDJPCCUpn6GqYG4_-2trQqU0VjK1r3dh2G1QuQEouIYLXA2h8G4K3Tn36-K7fKcDq1z4FarQvshfj0G2xseWeHP2KwOUI6BDfdV43pgp7ThCOZY4jdztwwVSd7qq2-X9rn4DqE1B_CdAfhdGLMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68199791</pqid></control><display><type>article</type><title>Using image processing to detect and classify narrow-band cricket and frog calls</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Brandes, T. Scott ; Naskrecki, Piotr ; Figueroa, Harold K.</creator><creatorcontrib>Brandes, T. Scott ; Naskrecki, Piotr ; Figueroa, Harold K.</creatorcontrib><description>An automatic call recognition (ACR) process is described that uses image processing techniques on spectrogram images to detect and classify constant-frequency cricket and frog calls recorded amidst a background of evening sounds found in a lowland Costa Rican rainforest. This process involves using image blur filters along with thresholding filters to isolate likely calling events. Features of these events, notably the event's central frequency, duration and bandwidth, along with the type of blur filter applied, are used with a Bayesian classifier to make identifications of the different calls. Of the 22 distinct sonotypes (calls presumed to be species-specific) recorded in the study site, 17 of them were recorded in high enough numbers to both train and test the classifier. The classifier approaches 100% true-positive accuracy for these 17 sonotypes, but also has a high false-negative rate (over 50% for 4 sonotypes). The very high true-positive accuracy of this process enables its use for monitoring singing crickets (and some frog species) in tropical forests.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.2355479</identifier><identifier>PMID: 17139751</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Acoustic signal processing ; Acoustic Stimulation ; Acoustics ; Algorithms ; Animals ; Anura - physiology ; Costa Rica ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Gryllidae - physiology ; Image Processing, Computer-Assisted - methods ; Physics ; Sound Spectrography ; Trees ; Vocalization, Animal - classification ; Vocalization, Animal - physiology</subject><ispartof>The Journal of the Acoustical Society of America, 2006-11, Vol.120 (5), p.2950-2957</ispartof><rights>2006 Acoustical Society of America</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833</citedby><cites>FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18270960$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17139751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brandes, T. Scott</creatorcontrib><creatorcontrib>Naskrecki, Piotr</creatorcontrib><creatorcontrib>Figueroa, Harold K.</creatorcontrib><title>Using image processing to detect and classify narrow-band cricket and frog calls</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>An automatic call recognition (ACR) process is described that uses image processing techniques on spectrogram images to detect and classify constant-frequency cricket and frog calls recorded amidst a background of evening sounds found in a lowland Costa Rican rainforest. This process involves using image blur filters along with thresholding filters to isolate likely calling events. Features of these events, notably the event's central frequency, duration and bandwidth, along with the type of blur filter applied, are used with a Bayesian classifier to make identifications of the different calls. Of the 22 distinct sonotypes (calls presumed to be species-specific) recorded in the study site, 17 of them were recorded in high enough numbers to both train and test the classifier. The classifier approaches 100% true-positive accuracy for these 17 sonotypes, but also has a high false-negative rate (over 50% for 4 sonotypes). The very high true-positive accuracy of this process enables its use for monitoring singing crickets (and some frog species) in tropical forests.</description><subject>Acoustic signal processing</subject><subject>Acoustic Stimulation</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Anura - physiology</subject><subject>Costa Rica</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gryllidae - physiology</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Physics</subject><subject>Sound Spectrography</subject><subject>Trees</subject><subject>Vocalization, Animal - classification</subject><subject>Vocalization, Animal - physiology</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLxDAUhYMozji68A9INwouOuYmTZNsBBl8wYAunHVI02SodlpNOsj8e2NbmZWryz183Mc5CJ0DngMQuIE5oYxlXB6gKTCCU8FIdoimGGNIM5nnE3QSwntsmaDyGE2AA5WcwRS9rkLVrJNqo9c2-fStsaEXujYpbWdNl-imTEyto-x2SaO9b7_Tohd9ZT7sADjfrhOj6zqcoiOn62DPxjpDq4f7t8VTunx5fF7cLVNDc9GljOelkJQLB05zjaWmGbVFTm1USWZyS6gERsHhTHNJHKVCc1aUDJPCCUpn6GqYG4_-2trQqU0VjK1r3dh2G1QuQEouIYLXA2h8G4K3Tn36-K7fKcDq1z4FarQvshfj0G2xseWeHP2KwOUI6BDfdV43pgp7ThCOZY4jdztwwVSd7qq2-X9rn4DqE1B_CdAfhdGLMA</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Brandes, T. Scott</creator><creator>Naskrecki, Piotr</creator><creator>Figueroa, Harold K.</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8BM</scope></search><sort><creationdate>20061101</creationdate><title>Using image processing to detect and classify narrow-band cricket and frog calls</title><author>Brandes, T. Scott ; Naskrecki, Piotr ; Figueroa, Harold K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acoustic signal processing</topic><topic>Acoustic Stimulation</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Anura - physiology</topic><topic>Costa Rica</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gryllidae - physiology</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Physics</topic><topic>Sound Spectrography</topic><topic>Trees</topic><topic>Vocalization, Animal - classification</topic><topic>Vocalization, Animal - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandes, T. Scott</creatorcontrib><creatorcontrib>Naskrecki, Piotr</creatorcontrib><creatorcontrib>Figueroa, Harold K.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ComDisDome</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandes, T. Scott</au><au>Naskrecki, Piotr</au><au>Figueroa, Harold K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using image processing to detect and classify narrow-band cricket and frog calls</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2006-11-01</date><risdate>2006</risdate><volume>120</volume><issue>5</issue><spage>2950</spage><epage>2957</epage><pages>2950-2957</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>An automatic call recognition (ACR) process is described that uses image processing techniques on spectrogram images to detect and classify constant-frequency cricket and frog calls recorded amidst a background of evening sounds found in a lowland Costa Rican rainforest. This process involves using image blur filters along with thresholding filters to isolate likely calling events. Features of these events, notably the event's central frequency, duration and bandwidth, along with the type of blur filter applied, are used with a Bayesian classifier to make identifications of the different calls. Of the 22 distinct sonotypes (calls presumed to be species-specific) recorded in the study site, 17 of them were recorded in high enough numbers to both train and test the classifier. The classifier approaches 100% true-positive accuracy for these 17 sonotypes, but also has a high false-negative rate (over 50% for 4 sonotypes). The very high true-positive accuracy of this process enables its use for monitoring singing crickets (and some frog species) in tropical forests.</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>17139751</pmid><doi>10.1121/1.2355479</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2006-11, Vol.120 (5), p.2950-2957 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_68199791 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Acoustic signal processing Acoustic Stimulation Acoustics Algorithms Animals Anura - physiology Costa Rica Exact sciences and technology Fundamental areas of phenomenology (including applications) Gryllidae - physiology Image Processing, Computer-Assisted - methods Physics Sound Spectrography Trees Vocalization, Animal - classification Vocalization, Animal - physiology |
title | Using image processing to detect and classify narrow-band cricket and frog calls |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20image%20processing%20to%20detect%20and%20classify%20narrow-band%20cricket%20and%20frog%20calls&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Brandes,%20T.%20Scott&rft.date=2006-11-01&rft.volume=120&rft.issue=5&rft.spage=2950&rft.epage=2957&rft.pages=2950-2957&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.2355479&rft_dat=%3Cproquest_cross%3E68199791%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68199791&rft_id=info:pmid/17139751&rfr_iscdi=true |