Loading…

Using image processing to detect and classify narrow-band cricket and frog calls

An automatic call recognition (ACR) process is described that uses image processing techniques on spectrogram images to detect and classify constant-frequency cricket and frog calls recorded amidst a background of evening sounds found in a lowland Costa Rican rainforest. This process involves using...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America 2006-11, Vol.120 (5), p.2950-2957
Main Authors: Brandes, T. Scott, Naskrecki, Piotr, Figueroa, Harold K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833
cites cdi_FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833
container_end_page 2957
container_issue 5
container_start_page 2950
container_title The Journal of the Acoustical Society of America
container_volume 120
creator Brandes, T. Scott
Naskrecki, Piotr
Figueroa, Harold K.
description An automatic call recognition (ACR) process is described that uses image processing techniques on spectrogram images to detect and classify constant-frequency cricket and frog calls recorded amidst a background of evening sounds found in a lowland Costa Rican rainforest. This process involves using image blur filters along with thresholding filters to isolate likely calling events. Features of these events, notably the event's central frequency, duration and bandwidth, along with the type of blur filter applied, are used with a Bayesian classifier to make identifications of the different calls. Of the 22 distinct sonotypes (calls presumed to be species-specific) recorded in the study site, 17 of them were recorded in high enough numbers to both train and test the classifier. The classifier approaches 100% true-positive accuracy for these 17 sonotypes, but also has a high false-negative rate (over 50% for 4 sonotypes). The very high true-positive accuracy of this process enables its use for monitoring singing crickets (and some frog species) in tropical forests.
doi_str_mv 10.1121/1.2355479
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68199791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68199791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYMozji68A9INwouOuYmTZNsBBl8wYAunHVI02SodlpNOsj8e2NbmZWryz183Mc5CJ0DngMQuIE5oYxlXB6gKTCCU8FIdoimGGNIM5nnE3QSwntsmaDyGE2AA5WcwRS9rkLVrJNqo9c2-fStsaEXujYpbWdNl-imTEyto-x2SaO9b7_Tohd9ZT7sADjfrhOj6zqcoiOn62DPxjpDq4f7t8VTunx5fF7cLVNDc9GljOelkJQLB05zjaWmGbVFTm1USWZyS6gERsHhTHNJHKVCc1aUDJPCCUpn6GqYG4_-2trQqU0VjK1r3dh2G1QuQEouIYLXA2h8G4K3Tn36-K7fKcDq1z4FarQvshfj0G2xseWeHP2KwOUI6BDfdV43pgp7ThCOZY4jdztwwVSd7qq2-X9rn4DqE1B_CdAfhdGLMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68199791</pqid></control><display><type>article</type><title>Using image processing to detect and classify narrow-band cricket and frog calls</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Brandes, T. Scott ; Naskrecki, Piotr ; Figueroa, Harold K.</creator><creatorcontrib>Brandes, T. Scott ; Naskrecki, Piotr ; Figueroa, Harold K.</creatorcontrib><description>An automatic call recognition (ACR) process is described that uses image processing techniques on spectrogram images to detect and classify constant-frequency cricket and frog calls recorded amidst a background of evening sounds found in a lowland Costa Rican rainforest. This process involves using image blur filters along with thresholding filters to isolate likely calling events. Features of these events, notably the event's central frequency, duration and bandwidth, along with the type of blur filter applied, are used with a Bayesian classifier to make identifications of the different calls. Of the 22 distinct sonotypes (calls presumed to be species-specific) recorded in the study site, 17 of them were recorded in high enough numbers to both train and test the classifier. The classifier approaches 100% true-positive accuracy for these 17 sonotypes, but also has a high false-negative rate (over 50% for 4 sonotypes). The very high true-positive accuracy of this process enables its use for monitoring singing crickets (and some frog species) in tropical forests.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.2355479</identifier><identifier>PMID: 17139751</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Acoustic signal processing ; Acoustic Stimulation ; Acoustics ; Algorithms ; Animals ; Anura - physiology ; Costa Rica ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Gryllidae - physiology ; Image Processing, Computer-Assisted - methods ; Physics ; Sound Spectrography ; Trees ; Vocalization, Animal - classification ; Vocalization, Animal - physiology</subject><ispartof>The Journal of the Acoustical Society of America, 2006-11, Vol.120 (5), p.2950-2957</ispartof><rights>2006 Acoustical Society of America</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833</citedby><cites>FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18270960$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17139751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brandes, T. Scott</creatorcontrib><creatorcontrib>Naskrecki, Piotr</creatorcontrib><creatorcontrib>Figueroa, Harold K.</creatorcontrib><title>Using image processing to detect and classify narrow-band cricket and frog calls</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>An automatic call recognition (ACR) process is described that uses image processing techniques on spectrogram images to detect and classify constant-frequency cricket and frog calls recorded amidst a background of evening sounds found in a lowland Costa Rican rainforest. This process involves using image blur filters along with thresholding filters to isolate likely calling events. Features of these events, notably the event's central frequency, duration and bandwidth, along with the type of blur filter applied, are used with a Bayesian classifier to make identifications of the different calls. Of the 22 distinct sonotypes (calls presumed to be species-specific) recorded in the study site, 17 of them were recorded in high enough numbers to both train and test the classifier. The classifier approaches 100% true-positive accuracy for these 17 sonotypes, but also has a high false-negative rate (over 50% for 4 sonotypes). The very high true-positive accuracy of this process enables its use for monitoring singing crickets (and some frog species) in tropical forests.</description><subject>Acoustic signal processing</subject><subject>Acoustic Stimulation</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Anura - physiology</subject><subject>Costa Rica</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gryllidae - physiology</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Physics</subject><subject>Sound Spectrography</subject><subject>Trees</subject><subject>Vocalization, Animal - classification</subject><subject>Vocalization, Animal - physiology</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLxDAUhYMozji68A9INwouOuYmTZNsBBl8wYAunHVI02SodlpNOsj8e2NbmZWryz183Mc5CJ0DngMQuIE5oYxlXB6gKTCCU8FIdoimGGNIM5nnE3QSwntsmaDyGE2AA5WcwRS9rkLVrJNqo9c2-fStsaEXujYpbWdNl-imTEyto-x2SaO9b7_Tohd9ZT7sADjfrhOj6zqcoiOn62DPxjpDq4f7t8VTunx5fF7cLVNDc9GljOelkJQLB05zjaWmGbVFTm1USWZyS6gERsHhTHNJHKVCc1aUDJPCCUpn6GqYG4_-2trQqU0VjK1r3dh2G1QuQEouIYLXA2h8G4K3Tn36-K7fKcDq1z4FarQvshfj0G2xseWeHP2KwOUI6BDfdV43pgp7ThCOZY4jdztwwVSd7qq2-X9rn4DqE1B_CdAfhdGLMA</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Brandes, T. Scott</creator><creator>Naskrecki, Piotr</creator><creator>Figueroa, Harold K.</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8BM</scope></search><sort><creationdate>20061101</creationdate><title>Using image processing to detect and classify narrow-band cricket and frog calls</title><author>Brandes, T. Scott ; Naskrecki, Piotr ; Figueroa, Harold K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acoustic signal processing</topic><topic>Acoustic Stimulation</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Anura - physiology</topic><topic>Costa Rica</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gryllidae - physiology</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Physics</topic><topic>Sound Spectrography</topic><topic>Trees</topic><topic>Vocalization, Animal - classification</topic><topic>Vocalization, Animal - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandes, T. Scott</creatorcontrib><creatorcontrib>Naskrecki, Piotr</creatorcontrib><creatorcontrib>Figueroa, Harold K.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ComDisDome</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandes, T. Scott</au><au>Naskrecki, Piotr</au><au>Figueroa, Harold K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using image processing to detect and classify narrow-band cricket and frog calls</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2006-11-01</date><risdate>2006</risdate><volume>120</volume><issue>5</issue><spage>2950</spage><epage>2957</epage><pages>2950-2957</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>An automatic call recognition (ACR) process is described that uses image processing techniques on spectrogram images to detect and classify constant-frequency cricket and frog calls recorded amidst a background of evening sounds found in a lowland Costa Rican rainforest. This process involves using image blur filters along with thresholding filters to isolate likely calling events. Features of these events, notably the event's central frequency, duration and bandwidth, along with the type of blur filter applied, are used with a Bayesian classifier to make identifications of the different calls. Of the 22 distinct sonotypes (calls presumed to be species-specific) recorded in the study site, 17 of them were recorded in high enough numbers to both train and test the classifier. The classifier approaches 100% true-positive accuracy for these 17 sonotypes, but also has a high false-negative rate (over 50% for 4 sonotypes). The very high true-positive accuracy of this process enables its use for monitoring singing crickets (and some frog species) in tropical forests.</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>17139751</pmid><doi>10.1121/1.2355479</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2006-11, Vol.120 (5), p.2950-2957
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_68199791
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Acoustic signal processing
Acoustic Stimulation
Acoustics
Algorithms
Animals
Anura - physiology
Costa Rica
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Gryllidae - physiology
Image Processing, Computer-Assisted - methods
Physics
Sound Spectrography
Trees
Vocalization, Animal - classification
Vocalization, Animal - physiology
title Using image processing to detect and classify narrow-band cricket and frog calls
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A12%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20image%20processing%20to%20detect%20and%20classify%20narrow-band%20cricket%20and%20frog%20calls&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Brandes,%20T.%20Scott&rft.date=2006-11-01&rft.volume=120&rft.issue=5&rft.spage=2950&rft.epage=2957&rft.pages=2950-2957&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.2355479&rft_dat=%3Cproquest_cross%3E68199791%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-576d89378f1fa7a09a343eb63e89324c6e2391531f04a792f338a75bd502bf833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68199791&rft_id=info:pmid/17139751&rfr_iscdi=true