Loading…

Chiral recognition applications of molecularly imprinted polymers: a critical review

Molecular imprinting technology offers the unique opportunity to tailor chiral stationary phases with predefined chiral recognition properties by employing the enantiomers of interest as binding-site-forming templates. Added advantages, such as ease of preparation, chemical robustness, low-cost prod...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2007-09, Vol.389 (2), p.377-397
Main Authors: Maier, Norbert M, Lindner, Wolfgang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molecular imprinting technology offers the unique opportunity to tailor chiral stationary phases with predefined chiral recognition properties by employing the enantiomers of interest as binding-site-forming templates. Added advantages, such as ease of preparation, chemical robustness, low-cost production, and the possibility of shaping molecularly imprinted polymers (MIPs) in various self-supporting formats, render them attractive materials for a broad range of chiral recognition applications. In this review a critical overview on recent developments in the field of MIP-based chiral recognition applications is given, focusing on separation techniques and molecular sensing. Inherent limitations associated with the use of enantioselective MIP materials in high-performance separation techniques are outlined, including binding site heterogeneity and slow mass transfer characteristics. The prospects of MIP materials as versatile recognition elements for the design of enantioselective sensor systems are highlighted.
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-007-1427-4