Loading…

Tracer diffusion in hard sphere fluids from molecular to hydrodynamic regimes

Molecular dynamics is employed to investigate tracer diffusion in hard sphere fluids. Reduced densities ( ρ * = ρ σ 3 , σ is the diameter of bath fluid particles) ranging from 0.02 to 0.52 and tracers ranging in diameter from 0.125 σ to 16 σ are considered. Finite-size effects are found to pose a si...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2006-11, Vol.125 (20), p.204502-204502-10
Main Authors: Sokolovskii, R. O., Thachuk, M., Patey, G. N.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-36c49f834108752bdde9afca1c0fc2b7b947000999212376ff6edc6ed6b9d74b3
cites cdi_FETCH-LOGICAL-c403t-36c49f834108752bdde9afca1c0fc2b7b947000999212376ff6edc6ed6b9d74b3
container_end_page 204502-10
container_issue 20
container_start_page 204502
container_title The Journal of chemical physics
container_volume 125
creator Sokolovskii, R. O.
Thachuk, M.
Patey, G. N.
description Molecular dynamics is employed to investigate tracer diffusion in hard sphere fluids. Reduced densities ( ρ * = ρ σ 3 , σ is the diameter of bath fluid particles) ranging from 0.02 to 0.52 and tracers ranging in diameter from 0.125 σ to 16 σ are considered. Finite-size effects are found to pose a significant problem and can lead to seriously underestimated tracer diffusion constants even in systems that are very large by simulation standards. It is shown that this can be overcome by applying a simple extrapolation formula that is linear in the reciprocal cell length L − 1 , allowing us to obtain infinite-volume estimates of the diffusion constant for all tracer sizes. For higher densities, the range of tracer diameters considered spans diffusion behavior from molecular to hydrodynamic regimes. In the hydrodynamic limit our extrapolated results are clearly consistent with the theoretically expected slip boundary conditions, whereas the underestimated values obtained without extrapolation could easily be interpreted as approaching the stick limit. It is shown that simply adding the Enskog and hydrodynamic contributions gives a reasonable qualitative description of the diffusion behavior but tends to overestimate the diffusion constant. We propose another expression that fits the simulation results for all densities and tracer diameters.
doi_str_mv 10.1063/1.2397074
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68213551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68213551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-36c49f834108752bdde9afca1c0fc2b7b947000999212376ff6edc6ed6b9d74b3</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqUw8AeQJySGFL9q1wMDqnhJRSxlthw_qFESFzsZ8u8JSgQTw9Vdjo4-HQAuMVpixOktXhIqBRLsCMwxWstCcImOwRwhggvJEZ-Bs5w_EUJYEHYKZlhgxgRGc_C6S9q4BG3wvsshNjA0cK-Thfmwd8lBX3XBZuhTrGEdK2e6SifYRrjvbYq2b3QdDEzuI9Qun4MTr6vsLqa_AO-PD7vNc7F9e3rZ3G8LwxBtC8oNk35N2TBWrEhprZPaG40N8oaUopRMDGOllAQTKrj33FkzHC-lFaykC3A9eg8pfnUut6oO2biq0o2LXVZ8TTBdrfAA3oygSTHn5Lw6pFDr1CuM1E87hdXUbmCvJmlX1s7-kVOsAbgbgWxCq9sh1v-2Mav6zapCQ78BJRB-dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68213551</pqid></control><display><type>article</type><title>Tracer diffusion in hard sphere fluids from molecular to hydrodynamic regimes</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Sokolovskii, R. O. ; Thachuk, M. ; Patey, G. N.</creator><creatorcontrib>Sokolovskii, R. O. ; Thachuk, M. ; Patey, G. N.</creatorcontrib><description>Molecular dynamics is employed to investigate tracer diffusion in hard sphere fluids. Reduced densities ( ρ * = ρ σ 3 , σ is the diameter of bath fluid particles) ranging from 0.02 to 0.52 and tracers ranging in diameter from 0.125 σ to 16 σ are considered. Finite-size effects are found to pose a significant problem and can lead to seriously underestimated tracer diffusion constants even in systems that are very large by simulation standards. It is shown that this can be overcome by applying a simple extrapolation formula that is linear in the reciprocal cell length L − 1 , allowing us to obtain infinite-volume estimates of the diffusion constant for all tracer sizes. For higher densities, the range of tracer diameters considered spans diffusion behavior from molecular to hydrodynamic regimes. In the hydrodynamic limit our extrapolated results are clearly consistent with the theoretically expected slip boundary conditions, whereas the underestimated values obtained without extrapolation could easily be interpreted as approaching the stick limit. It is shown that simply adding the Enskog and hydrodynamic contributions gives a reasonable qualitative description of the diffusion behavior but tends to overestimate the diffusion constant. We propose another expression that fits the simulation results for all densities and tracer diameters.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.2397074</identifier><identifier>PMID: 17144710</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2006-11, Vol.125 (20), p.204502-204502-10</ispartof><rights>2006 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-36c49f834108752bdde9afca1c0fc2b7b947000999212376ff6edc6ed6b9d74b3</citedby><cites>FETCH-LOGICAL-c403t-36c49f834108752bdde9afca1c0fc2b7b947000999212376ff6edc6ed6b9d74b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,795,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17144710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sokolovskii, R. O.</creatorcontrib><creatorcontrib>Thachuk, M.</creatorcontrib><creatorcontrib>Patey, G. N.</creatorcontrib><title>Tracer diffusion in hard sphere fluids from molecular to hydrodynamic regimes</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Molecular dynamics is employed to investigate tracer diffusion in hard sphere fluids. Reduced densities ( ρ * = ρ σ 3 , σ is the diameter of bath fluid particles) ranging from 0.02 to 0.52 and tracers ranging in diameter from 0.125 σ to 16 σ are considered. Finite-size effects are found to pose a significant problem and can lead to seriously underestimated tracer diffusion constants even in systems that are very large by simulation standards. It is shown that this can be overcome by applying a simple extrapolation formula that is linear in the reciprocal cell length L − 1 , allowing us to obtain infinite-volume estimates of the diffusion constant for all tracer sizes. For higher densities, the range of tracer diameters considered spans diffusion behavior from molecular to hydrodynamic regimes. In the hydrodynamic limit our extrapolated results are clearly consistent with the theoretically expected slip boundary conditions, whereas the underestimated values obtained without extrapolation could easily be interpreted as approaching the stick limit. It is shown that simply adding the Enskog and hydrodynamic contributions gives a reasonable qualitative description of the diffusion behavior but tends to overestimate the diffusion constant. We propose another expression that fits the simulation results for all densities and tracer diameters.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EoqUw8AeQJySGFL9q1wMDqnhJRSxlthw_qFESFzsZ8u8JSgQTw9Vdjo4-HQAuMVpixOktXhIqBRLsCMwxWstCcImOwRwhggvJEZ-Bs5w_EUJYEHYKZlhgxgRGc_C6S9q4BG3wvsshNjA0cK-Thfmwd8lBX3XBZuhTrGEdK2e6SifYRrjvbYq2b3QdDEzuI9Qun4MTr6vsLqa_AO-PD7vNc7F9e3rZ3G8LwxBtC8oNk35N2TBWrEhprZPaG40N8oaUopRMDGOllAQTKrj33FkzHC-lFaykC3A9eg8pfnUut6oO2biq0o2LXVZ8TTBdrfAA3oygSTHn5Lw6pFDr1CuM1E87hdXUbmCvJmlX1s7-kVOsAbgbgWxCq9sh1v-2Mav6zapCQ78BJRB-dA</recordid><startdate>20061128</startdate><enddate>20061128</enddate><creator>Sokolovskii, R. O.</creator><creator>Thachuk, M.</creator><creator>Patey, G. N.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061128</creationdate><title>Tracer diffusion in hard sphere fluids from molecular to hydrodynamic regimes</title><author>Sokolovskii, R. O. ; Thachuk, M. ; Patey, G. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-36c49f834108752bdde9afca1c0fc2b7b947000999212376ff6edc6ed6b9d74b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sokolovskii, R. O.</creatorcontrib><creatorcontrib>Thachuk, M.</creatorcontrib><creatorcontrib>Patey, G. N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sokolovskii, R. O.</au><au>Thachuk, M.</au><au>Patey, G. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracer diffusion in hard sphere fluids from molecular to hydrodynamic regimes</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2006-11-28</date><risdate>2006</risdate><volume>125</volume><issue>20</issue><spage>204502</spage><epage>204502-10</epage><pages>204502-204502-10</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Molecular dynamics is employed to investigate tracer diffusion in hard sphere fluids. Reduced densities ( ρ * = ρ σ 3 , σ is the diameter of bath fluid particles) ranging from 0.02 to 0.52 and tracers ranging in diameter from 0.125 σ to 16 σ are considered. Finite-size effects are found to pose a significant problem and can lead to seriously underestimated tracer diffusion constants even in systems that are very large by simulation standards. It is shown that this can be overcome by applying a simple extrapolation formula that is linear in the reciprocal cell length L − 1 , allowing us to obtain infinite-volume estimates of the diffusion constant for all tracer sizes. For higher densities, the range of tracer diameters considered spans diffusion behavior from molecular to hydrodynamic regimes. In the hydrodynamic limit our extrapolated results are clearly consistent with the theoretically expected slip boundary conditions, whereas the underestimated values obtained without extrapolation could easily be interpreted as approaching the stick limit. It is shown that simply adding the Enskog and hydrodynamic contributions gives a reasonable qualitative description of the diffusion behavior but tends to overestimate the diffusion constant. We propose another expression that fits the simulation results for all densities and tracer diameters.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>17144710</pmid><doi>10.1063/1.2397074</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2006-11, Vol.125 (20), p.204502-204502-10
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_68213551
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
title Tracer diffusion in hard sphere fluids from molecular to hydrodynamic regimes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracer%20diffusion%20in%20hard%20sphere%20fluids%20from%20molecular%20to%20hydrodynamic%20regimes&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Sokolovskii,%20R.%20O.&rft.date=2006-11-28&rft.volume=125&rft.issue=20&rft.spage=204502&rft.epage=204502-10&rft.pages=204502-204502-10&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.2397074&rft_dat=%3Cproquest_cross%3E68213551%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-36c49f834108752bdde9afca1c0fc2b7b947000999212376ff6edc6ed6b9d74b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68213551&rft_id=info:pmid/17144710&rfr_iscdi=true