Loading…

Dual aromatase-sulfatase inhibitors based on the anastrozole template: synthesis, in vitro SAR, molecular modelling and in vivo activity

The synthesis and biological evaluation of a series of novel Dual Aromatase-Sulfatase Inhibitors (DASIs) are described. It is postulated that dual inhibition of the aromatase and steroid sulfatase enzymes, both responsible for the biosynthesis of oestrogens, will be beneficial in the treatment of ho...

Full description

Saved in:
Bibliographic Details
Published in:Organic & biomolecular chemistry 2007-01, Vol.5 (18), p.2940-2952
Main Authors: Jackson, Toby, Woo, L W Lawrence, Trusselle, Melanie N, Chander, Surinder K, Purohit, Atul, Reed, Michael J, Potter, Barry V L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The synthesis and biological evaluation of a series of novel Dual Aromatase-Sulfatase Inhibitors (DASIs) are described. It is postulated that dual inhibition of the aromatase and steroid sulfatase enzymes, both responsible for the biosynthesis of oestrogens, will be beneficial in the treatment of hormone-dependent breast cancer. The compounds are based upon the Anastrozole aromatase inhibitor template which, while maintaining the haem ligating triazole moiety crucial for enzyme inhibition, was modified to include a phenol sulfamate ester motif, the pharmacophore for potent irreversible steroid sulfatase inhibition. Adaption of a synthetic route to Anastrozole was accomplished via selective radical bromination and substitution reactions to furnish a series of inhibitory aromatase pharmacophores. Linking these fragments to the phenol sulfamate ester moiety employed S(N)2, Heck and Mitsunobu reactions with phenolic precursors, from where the completed DASIs were achieved via sulfamoylation. In vitro, the lead compound, 11, had a high degree of potency against aromatase (IC(50) 3.5 nM), comparable with that of Anastrozole (IC(50) 1.5 nM) whereas, only moderate activity against steroid sulfatase was found. However, in vivo, 11 surprisingly exhibited potent dual inhibition. Compound 11 was modelled into the active site of a homology model of human aromatase and the X-ray crystal structure of steroid sulfatase.
ISSN:1477-0520
1477-0539
DOI:10.1039/b707768h