Loading…
Canonical Correlation Analysis Applied to Remove Muscle Artifacts From the Electroencephalogram
The electroencephalogram (EEG) is often contaminated by muscle artifacts. In this paper, a new method for muscle artifact removal in EEG is presented, based on canonical correlation analysis (CCA) as a blind source separation (BSS) technique. This method is demonstrated on a synthetic data set. The...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2006-12, Vol.53 (12), p.2583-2587 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The electroencephalogram (EEG) is often contaminated by muscle artifacts. In this paper, a new method for muscle artifact removal in EEG is presented, based on canonical correlation analysis (CCA) as a blind source separation (BSS) technique. This method is demonstrated on a synthetic data set. The method outperformed a low-pass filter with different cutoff frequencies and an independent component analysis (ICA)-based technique for muscle artifact removal. In addition, the method is applied on a real ictal EEG recording contaminated with muscle artifacts. The proposed method removed successfully the muscle artifact without altering the recorded underlying ictal activity |
---|---|
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/TBME.2006.879459 |