Loading…
Acceleration of Monte Carlo simulations through spatial updating in the grand canonical ensemble
A new grand canonical Monte Carlo algorithm for continuum fluid models is proposed. The method is based on a generalization of sequential Monte Carlo algorithms for lattice gas systems. The elementary moves, particle insertions and removals, are constructed by analogy with those of a lattice gas. Th...
Saved in:
Published in: | The Journal of chemical physics 2007-08, Vol.127 (8), p.084106-084106 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new grand canonical Monte Carlo algorithm for continuum fluid models is proposed. The method is based on a generalization of sequential Monte Carlo algorithms for lattice gas systems. The elementary moves, particle insertions and removals, are constructed by analogy with those of a lattice gas. The updating is implemented by selecting points in space (spatial updating) either at random or in a definitive order (sequential). The type of move, insertion or removal, is deduced based on the local environment of the selected points. Results on two-dimensional square-well fluids indicate that the sequential version of the proposed algorithm converges faster than standard grand canonical algorithms for continuum fluids. Due to the nature of the updating, additional reduction of simulation time may be achieved by parallel implementation through domain decomposition. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.2759923 |