Loading…

DIFFERENTIATED STRUCTURE AND FUNCTION OF PRIMARY CULTURES OF MONKEY OVIDUCTAL EPITHELIUM

We have established well-differentiated, polarized cultures of monkey oviductal epithelium. Oviductal epithelial cells were isolated by protease digestion and plated on collagen-coated, porous cell culture inserts. About 5 d after plating, cells developed detectable transepithelial electrical resist...

Full description

Saved in:
Bibliographic Details
Published in:In vitro cellular & developmental biology. Animal 2006-09, Vol.42 (8), p.248-254
Main Authors: RAJAGOPAL, M, TOLLNER, T. L, FINKBEINER, W. E, CHERR, G. N, WIDDICOMBE, J. H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have established well-differentiated, polarized cultures of monkey oviductal epithelium. Oviductal epithelial cells were isolated by protease digestion and plated on collagen-coated, porous cell culture inserts. About 5 d after plating, cells developed detectable transepithelial electrical resistance of up to 2000 Ω.cm2 (an index of tight junction formation) and transepithelial voltages of up to 20 mV (an index of vectorial transepithelial ion transport). Measurements of short-circuit current in Ussing chambers indicated that active secretion of Cl was the major transepithelial active ion transport process, and that this was stimulated by elevation of either cAMP or Cai. Furthermore, estimates of the volume of mucosal liquid were consistent with Cl secretion mediating fluid secretion. Various microscopical methods showed that the cultures were densely ciliated and contained mature secretory cells. Transport across the oviductal epithelium determines the composition of the oviductal fluid, and the study of the relevant transport processes will be greatly enhanced by well-differentiated cultures of oviductal epithelium of the kind established here.
ISSN:1071-2690
1543-706X
1543-706X
DOI:10.1290/0602015.1