Loading…

Slow Manifold Structure in Explosive Kinetics. 2. Extension to Higher Dimensional Systems

This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different families of Lyapunov-type numbers, based either on the relative growth of normal to t...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2006-12, Vol.110 (50), p.13463-13474
Main Authors: Giona, M, Adrover, A, Creta, F, Valorani, M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3
cites cdi_FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3
container_end_page 13474
container_issue 50
container_start_page 13463
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 110
creator Giona, M
Adrover, A
Creta, F
Valorani, M
description This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different families of Lyapunov-type numbers, based either on the relative growth of normal to tangential perturbations or on the deformation of m-dimensional volume elements (if the manifold is m-dimensional) and of the complementary (n − m)-elements in the normal orthogonal complement. The latter approach, based on elementary concepts of exterior algebra, is particularly simple because the evolution of the relevant volume elements can be related to suitable local stretching rates, and local analysis can be performed directly from the knowledge of the Jacobian matrix of the vector field. Several examples of bifurcations of the points-at-infinity, which modify the manifold structure, are discussed for 3-D models of exothermic reactions.
doi_str_mv 10.1021/jp063608o
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68247124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68247124</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3</originalsourceid><addsrcrecordid>eNptkMFO3DAQhi0EAkp74AWQL63UQxZ7HDvxsdpuC1pQW-32wMky3gl4SeKtnQD79g3KCi6cZjTz6R_NR8gpZxPOgJ-vN0wJxcqwR465BJZJ4HJ_6FmpM6mEPiIfUlozxriA_JAc8YIrWRb8mNws6vBEr23rq1Cv6KKLvev6iNS3dPa8qUPyj0jnvsXOuzShMBnGHbbJh5Z2gV74u3uM9Ltvxpmt6WKbOmzSR3JQ2Trhp109IX9_zJbTi-zq18_L6berzArJuwwwF4oL7W6500qrXNmVAgeKcQ1Kg7UlVrosSpbnlWNagUSBilXIAVCvxAn5MuZuYvjXY-pM45PDurYthj4ZVUJecMgH8OsIuhhSiliZTfSNjVvDmXnxaF49DuzZLrS_bXD1Ru7EDUA2An549vl1b-ODUYUopFn-Xhg2_QNyDkvDBv7zyFuXzDr0cTCV3jn8H8Q8h28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68247124</pqid></control><display><type>article</type><title>Slow Manifold Structure in Explosive Kinetics. 2. Extension to Higher Dimensional Systems</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Giona, M ; Adrover, A ; Creta, F ; Valorani, M</creator><creatorcontrib>Giona, M ; Adrover, A ; Creta, F ; Valorani, M</creatorcontrib><description>This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different families of Lyapunov-type numbers, based either on the relative growth of normal to tangential perturbations or on the deformation of m-dimensional volume elements (if the manifold is m-dimensional) and of the complementary (n − m)-elements in the normal orthogonal complement. The latter approach, based on elementary concepts of exterior algebra, is particularly simple because the evolution of the relevant volume elements can be related to suitable local stretching rates, and local analysis can be performed directly from the knowledge of the Jacobian matrix of the vector field. Several examples of bifurcations of the points-at-infinity, which modify the manifold structure, are discussed for 3-D models of exothermic reactions.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp063608o</identifier><identifier>PMID: 17165871</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2006-12, Vol.110 (50), p.13463-13474</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3</citedby><cites>FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17165871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giona, M</creatorcontrib><creatorcontrib>Adrover, A</creatorcontrib><creatorcontrib>Creta, F</creatorcontrib><creatorcontrib>Valorani, M</creatorcontrib><title>Slow Manifold Structure in Explosive Kinetics. 2. Extension to Higher Dimensional Systems</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different families of Lyapunov-type numbers, based either on the relative growth of normal to tangential perturbations or on the deformation of m-dimensional volume elements (if the manifold is m-dimensional) and of the complementary (n − m)-elements in the normal orthogonal complement. The latter approach, based on elementary concepts of exterior algebra, is particularly simple because the evolution of the relevant volume elements can be related to suitable local stretching rates, and local analysis can be performed directly from the knowledge of the Jacobian matrix of the vector field. Several examples of bifurcations of the points-at-infinity, which modify the manifold structure, are discussed for 3-D models of exothermic reactions.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNptkMFO3DAQhi0EAkp74AWQL63UQxZ7HDvxsdpuC1pQW-32wMky3gl4SeKtnQD79g3KCi6cZjTz6R_NR8gpZxPOgJ-vN0wJxcqwR465BJZJ4HJ_6FmpM6mEPiIfUlozxriA_JAc8YIrWRb8mNws6vBEr23rq1Cv6KKLvev6iNS3dPa8qUPyj0jnvsXOuzShMBnGHbbJh5Z2gV74u3uM9Ltvxpmt6WKbOmzSR3JQ2Trhp109IX9_zJbTi-zq18_L6berzArJuwwwF4oL7W6500qrXNmVAgeKcQ1Kg7UlVrosSpbnlWNagUSBilXIAVCvxAn5MuZuYvjXY-pM45PDurYthj4ZVUJecMgH8OsIuhhSiliZTfSNjVvDmXnxaF49DuzZLrS_bXD1Ru7EDUA2An549vl1b-ODUYUopFn-Xhg2_QNyDkvDBv7zyFuXzDr0cTCV3jn8H8Q8h28</recordid><startdate>20061221</startdate><enddate>20061221</enddate><creator>Giona, M</creator><creator>Adrover, A</creator><creator>Creta, F</creator><creator>Valorani, M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061221</creationdate><title>Slow Manifold Structure in Explosive Kinetics. 2. Extension to Higher Dimensional Systems</title><author>Giona, M ; Adrover, A ; Creta, F ; Valorani, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giona, M</creatorcontrib><creatorcontrib>Adrover, A</creatorcontrib><creatorcontrib>Creta, F</creatorcontrib><creatorcontrib>Valorani, M</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giona, M</au><au>Adrover, A</au><au>Creta, F</au><au>Valorani, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow Manifold Structure in Explosive Kinetics. 2. Extension to Higher Dimensional Systems</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2006-12-21</date><risdate>2006</risdate><volume>110</volume><issue>50</issue><spage>13463</spage><epage>13474</epage><pages>13463-13474</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different families of Lyapunov-type numbers, based either on the relative growth of normal to tangential perturbations or on the deformation of m-dimensional volume elements (if the manifold is m-dimensional) and of the complementary (n − m)-elements in the normal orthogonal complement. The latter approach, based on elementary concepts of exterior algebra, is particularly simple because the evolution of the relevant volume elements can be related to suitable local stretching rates, and local analysis can be performed directly from the knowledge of the Jacobian matrix of the vector field. Several examples of bifurcations of the points-at-infinity, which modify the manifold structure, are discussed for 3-D models of exothermic reactions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17165871</pmid><doi>10.1021/jp063608o</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2006-12, Vol.110 (50), p.13463-13474
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_68247124
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Slow Manifold Structure in Explosive Kinetics. 2. Extension to Higher Dimensional Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow%20Manifold%20Structure%20in%20Explosive%20Kinetics.%202.%20Extension%20to%20Higher%20Dimensional%20Systems&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Giona,%20M&rft.date=2006-12-21&rft.volume=110&rft.issue=50&rft.spage=13463&rft.epage=13474&rft.pages=13463-13474&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp063608o&rft_dat=%3Cproquest_cross%3E68247124%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68247124&rft_id=info:pmid/17165871&rfr_iscdi=true