Loading…
Slow Manifold Structure in Explosive Kinetics. 2. Extension to Higher Dimensional Systems
This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different families of Lyapunov-type numbers, based either on the relative growth of normal to t...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2006-12, Vol.110 (50), p.13463-13474 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3 |
container_end_page | 13474 |
container_issue | 50 |
container_start_page | 13463 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 110 |
creator | Giona, M Adrover, A Creta, F Valorani, M |
description | This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different families of Lyapunov-type numbers, based either on the relative growth of normal to tangential perturbations or on the deformation of m-dimensional volume elements (if the manifold is m-dimensional) and of the complementary (n − m)-elements in the normal orthogonal complement. The latter approach, based on elementary concepts of exterior algebra, is particularly simple because the evolution of the relevant volume elements can be related to suitable local stretching rates, and local analysis can be performed directly from the knowledge of the Jacobian matrix of the vector field. Several examples of bifurcations of the points-at-infinity, which modify the manifold structure, are discussed for 3-D models of exothermic reactions. |
doi_str_mv | 10.1021/jp063608o |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68247124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68247124</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3</originalsourceid><addsrcrecordid>eNptkMFO3DAQhi0EAkp74AWQL63UQxZ7HDvxsdpuC1pQW-32wMky3gl4SeKtnQD79g3KCi6cZjTz6R_NR8gpZxPOgJ-vN0wJxcqwR465BJZJ4HJ_6FmpM6mEPiIfUlozxriA_JAc8YIrWRb8mNws6vBEr23rq1Cv6KKLvev6iNS3dPa8qUPyj0jnvsXOuzShMBnGHbbJh5Z2gV74u3uM9Ltvxpmt6WKbOmzSR3JQ2Trhp109IX9_zJbTi-zq18_L6berzArJuwwwF4oL7W6500qrXNmVAgeKcQ1Kg7UlVrosSpbnlWNagUSBilXIAVCvxAn5MuZuYvjXY-pM45PDurYthj4ZVUJecMgH8OsIuhhSiliZTfSNjVvDmXnxaF49DuzZLrS_bXD1Ru7EDUA2An549vl1b-ODUYUopFn-Xhg2_QNyDkvDBv7zyFuXzDr0cTCV3jn8H8Q8h28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68247124</pqid></control><display><type>article</type><title>Slow Manifold Structure in Explosive Kinetics. 2. Extension to Higher Dimensional Systems</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Giona, M ; Adrover, A ; Creta, F ; Valorani, M</creator><creatorcontrib>Giona, M ; Adrover, A ; Creta, F ; Valorani, M</creatorcontrib><description>This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different families of Lyapunov-type numbers, based either on the relative growth of normal to tangential perturbations or on the deformation of m-dimensional volume elements (if the manifold is m-dimensional) and of the complementary (n − m)-elements in the normal orthogonal complement. The latter approach, based on elementary concepts of exterior algebra, is particularly simple because the evolution of the relevant volume elements can be related to suitable local stretching rates, and local analysis can be performed directly from the knowledge of the Jacobian matrix of the vector field. Several examples of bifurcations of the points-at-infinity, which modify the manifold structure, are discussed for 3-D models of exothermic reactions.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp063608o</identifier><identifier>PMID: 17165871</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2006-12, Vol.110 (50), p.13463-13474</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3</citedby><cites>FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17165871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giona, M</creatorcontrib><creatorcontrib>Adrover, A</creatorcontrib><creatorcontrib>Creta, F</creatorcontrib><creatorcontrib>Valorani, M</creatorcontrib><title>Slow Manifold Structure in Explosive Kinetics. 2. Extension to Higher Dimensional Systems</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different families of Lyapunov-type numbers, based either on the relative growth of normal to tangential perturbations or on the deformation of m-dimensional volume elements (if the manifold is m-dimensional) and of the complementary (n − m)-elements in the normal orthogonal complement. The latter approach, based on elementary concepts of exterior algebra, is particularly simple because the evolution of the relevant volume elements can be related to suitable local stretching rates, and local analysis can be performed directly from the knowledge of the Jacobian matrix of the vector field. Several examples of bifurcations of the points-at-infinity, which modify the manifold structure, are discussed for 3-D models of exothermic reactions.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNptkMFO3DAQhi0EAkp74AWQL63UQxZ7HDvxsdpuC1pQW-32wMky3gl4SeKtnQD79g3KCi6cZjTz6R_NR8gpZxPOgJ-vN0wJxcqwR465BJZJ4HJ_6FmpM6mEPiIfUlozxriA_JAc8YIrWRb8mNws6vBEr23rq1Cv6KKLvev6iNS3dPa8qUPyj0jnvsXOuzShMBnGHbbJh5Z2gV74u3uM9Ltvxpmt6WKbOmzSR3JQ2Trhp109IX9_zJbTi-zq18_L6berzArJuwwwF4oL7W6500qrXNmVAgeKcQ1Kg7UlVrosSpbnlWNagUSBilXIAVCvxAn5MuZuYvjXY-pM45PDurYthj4ZVUJecMgH8OsIuhhSiliZTfSNjVvDmXnxaF49DuzZLrS_bXD1Ru7EDUA2An549vl1b-ODUYUopFn-Xhg2_QNyDkvDBv7zyFuXzDr0cTCV3jn8H8Q8h28</recordid><startdate>20061221</startdate><enddate>20061221</enddate><creator>Giona, M</creator><creator>Adrover, A</creator><creator>Creta, F</creator><creator>Valorani, M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061221</creationdate><title>Slow Manifold Structure in Explosive Kinetics. 2. Extension to Higher Dimensional Systems</title><author>Giona, M ; Adrover, A ; Creta, F ; Valorani, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giona, M</creatorcontrib><creatorcontrib>Adrover, A</creatorcontrib><creatorcontrib>Creta, F</creatorcontrib><creatorcontrib>Valorani, M</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giona, M</au><au>Adrover, A</au><au>Creta, F</au><au>Valorani, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow Manifold Structure in Explosive Kinetics. 2. Extension to Higher Dimensional Systems</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2006-12-21</date><risdate>2006</risdate><volume>110</volume><issue>50</issue><spage>13463</spage><epage>13474</epage><pages>13463-13474</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>This Article extends the geometric analysis of slow invariant manifolds in explosive kinetics developed by Creta et al. to three-dimensional and higher systems. Invariant manifolds can be characterized by different families of Lyapunov-type numbers, based either on the relative growth of normal to tangential perturbations or on the deformation of m-dimensional volume elements (if the manifold is m-dimensional) and of the complementary (n − m)-elements in the normal orthogonal complement. The latter approach, based on elementary concepts of exterior algebra, is particularly simple because the evolution of the relevant volume elements can be related to suitable local stretching rates, and local analysis can be performed directly from the knowledge of the Jacobian matrix of the vector field. Several examples of bifurcations of the points-at-infinity, which modify the manifold structure, are discussed for 3-D models of exothermic reactions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17165871</pmid><doi>10.1021/jp063608o</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2006-12, Vol.110 (50), p.13463-13474 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_68247124 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Slow Manifold Structure in Explosive Kinetics. 2. Extension to Higher Dimensional Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow%20Manifold%20Structure%20in%20Explosive%20Kinetics.%202.%20Extension%20to%20Higher%20Dimensional%20Systems&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Giona,%20M&rft.date=2006-12-21&rft.volume=110&rft.issue=50&rft.spage=13463&rft.epage=13474&rft.pages=13463-13474&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp063608o&rft_dat=%3Cproquest_cross%3E68247124%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a351t-2e436139cb1c969646ad62c260192692aa8ef9878044fc09625e3e60fe122e9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68247124&rft_id=info:pmid/17165871&rfr_iscdi=true |