Loading…
Patterning organic single-crystal transistor arrays
Field-effect transistors made of organic single crystals are ideal for studying the charge transport characteristics of organic semiconductor materials. Their outstanding device performance, relative to that of transistors made of organic thin films, makes them also attractive candidates for electro...
Saved in:
Published in: | Nature 2006-12, Vol.444 (7121), p.913-917 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c744t-897d56e1c4625f44724ca49ae2ef755415cc5271b1186f6ba04cccc0fd381d313 |
---|---|
cites | cdi_FETCH-LOGICAL-c744t-897d56e1c4625f44724ca49ae2ef755415cc5271b1186f6ba04cccc0fd381d313 |
container_end_page | 917 |
container_issue | 7121 |
container_start_page | 913 |
container_title | Nature |
container_volume | 444 |
creator | Bao, Zhenan Briseno, Alejandro L Mannsfeld, Stefan C. B Ling, Mang M Liu, Shuhong Tseng, Ricky J Reese, Colin Roberts, Mark E Yang, Yang Wudl, Fred |
description | Field-effect transistors made of organic single crystals are ideal for studying the charge transport characteristics of organic semiconductor materials. Their outstanding device performance, relative to that of transistors made of organic thin films, makes them also attractive candidates for electronic applications such as active matrix displays and sensor arrays. These applications require minimal cross-talk between neighbouring devices. In the case of thin film systems, simple patterning of the active semiconductor layer minimizes cross-talk. But when using organic single crystals, the only approach currently available for creating arrays of separate devices is manual selection and placing of individual crystals-a process prohibitive for producing devices at high density and with reasonable throughput. In contrast, inorganic crystals have been grown in extended arrays, and efficient and large-area fabrication of silicon crystalline islands with high mobilities for electronic applications has been reported. Here we describe a method for effectively fabricating large arrays of single crystals of a wide range of organic semiconductor materials directly onto transistor source-drain electrodes. We find that film domains of octadecyltriethoxysilane microcontact-printed onto either clean Si/SiO2 surfaces or flexible plastic provide control over the nucleation of vapour-grown organic single crystals. This allows us to fabricate large arrays of high-performance organic single-crystal field-effect transistors with mobilities as high as 2.4 cm2 V-1 s-1 and on/off ratios greater than 107, and devices on flexible substrates that retain their performance after significant bending. These results suggest that our fabrication approach constitutes a promising step that might ultimately allow us to utilize high-performance organic single-crystal field-effect transistors for large-area electronics applications. |
doi_str_mv | 10.1038/nature05427 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68247135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185447799</galeid><sourcerecordid>A185447799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c744t-897d56e1c4625f44724ca49ae2ef755415cc5271b1186f6ba04cccc0fd381d313</originalsourceid><addsrcrecordid>eNqF0s1v0zAYBnALMbFSOHFHBQkEggx_2zlW1RiTJkAwxDFyHSfylDqd7Uj0v-dFqdYWFZYcoji_PEmevAg9I_iMYKY_BJOH6LDgVD1AE8KVLLjU6iGaYEx1gTWTp-hxSjcYY0EUf4ROiSJScU0niH01ObsYfGhnfWxN8HaW4KRzhY2blE03y9GE5FPu48zEaDbpCTppTJfc0-1xin58PL9efCquvlxcLuZXhVWc50KXqhbSEcslFQ3ninJreGkcdY0SghNhraCKLAnRspFLg7mFDTc106RmhE3R6zF3HfvbwaVcrXyyrutMcP2QKqkpV4SJeyGT8NmyxADf_BcSJZiAV8P8foo1JVpALtCXf9GbfogBqqko5oIyDf9giooRtaZzlQ9ND73a1gUXTdcH13hYnkMiFKXKchd64O3a31b76OwIgr12K2-Ppr49uAFMdr9ya4aUqsvv3w7tu3_b-fXPxeej2sY-peiaah39ysQNNFX9mdNqb05BP99WNixXrt7Z7WACeLUFJlnTNTCD1qedg6HGrGTg3o8uwaXQurjr_vhzX4x8XLzL2ze_AfDTBb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204523808</pqid></control><display><type>article</type><title>Patterning organic single-crystal transistor arrays</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Bao, Zhenan ; Briseno, Alejandro L ; Mannsfeld, Stefan C. B ; Ling, Mang M ; Liu, Shuhong ; Tseng, Ricky J ; Reese, Colin ; Roberts, Mark E ; Yang, Yang ; Wudl, Fred</creator><creatorcontrib>Bao, Zhenan ; Briseno, Alejandro L ; Mannsfeld, Stefan C. B ; Ling, Mang M ; Liu, Shuhong ; Tseng, Ricky J ; Reese, Colin ; Roberts, Mark E ; Yang, Yang ; Wudl, Fred</creatorcontrib><description>Field-effect transistors made of organic single crystals are ideal for studying the charge transport characteristics of organic semiconductor materials. Their outstanding device performance, relative to that of transistors made of organic thin films, makes them also attractive candidates for electronic applications such as active matrix displays and sensor arrays. These applications require minimal cross-talk between neighbouring devices. In the case of thin film systems, simple patterning of the active semiconductor layer minimizes cross-talk. But when using organic single crystals, the only approach currently available for creating arrays of separate devices is manual selection and placing of individual crystals-a process prohibitive for producing devices at high density and with reasonable throughput. In contrast, inorganic crystals have been grown in extended arrays, and efficient and large-area fabrication of silicon crystalline islands with high mobilities for electronic applications has been reported. Here we describe a method for effectively fabricating large arrays of single crystals of a wide range of organic semiconductor materials directly onto transistor source-drain electrodes. We find that film domains of octadecyltriethoxysilane microcontact-printed onto either clean Si/SiO2 surfaces or flexible plastic provide control over the nucleation of vapour-grown organic single crystals. This allows us to fabricate large arrays of high-performance organic single-crystal field-effect transistors with mobilities as high as 2.4 cm2 V-1 s-1 and on/off ratios greater than 107, and devices on flexible substrates that retain their performance after significant bending. These results suggest that our fabrication approach constitutes a promising step that might ultimately allow us to utilize high-performance organic single-crystal field-effect transistors for large-area electronics applications.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/nature05427</identifier><identifier>PMID: 17167482</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Applied sciences ; Arrays ; Crystals ; Devices ; Electrodes ; Electronics ; Exact sciences and technology ; Fabrication ; Humanities and Social Sciences ; Islands ; letter ; multidisciplinary ; Nucleation ; Organic chemicals ; Patterning ; Science ; Science (multidisciplinary) ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Silicon ; Single crystals ; Thin films ; Transistors</subject><ispartof>Nature, 2006-12, Vol.444 (7121), p.913-917</ispartof><rights>Springer Nature Limited 2006</rights><rights>2007 INIST-CNRS</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 14, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c744t-897d56e1c4625f44724ca49ae2ef755415cc5271b1186f6ba04cccc0fd381d313</citedby><cites>FETCH-LOGICAL-c744t-897d56e1c4625f44724ca49ae2ef755415cc5271b1186f6ba04cccc0fd381d313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2725,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18360393$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17167482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bao, Zhenan</creatorcontrib><creatorcontrib>Briseno, Alejandro L</creatorcontrib><creatorcontrib>Mannsfeld, Stefan C. B</creatorcontrib><creatorcontrib>Ling, Mang M</creatorcontrib><creatorcontrib>Liu, Shuhong</creatorcontrib><creatorcontrib>Tseng, Ricky J</creatorcontrib><creatorcontrib>Reese, Colin</creatorcontrib><creatorcontrib>Roberts, Mark E</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Wudl, Fred</creatorcontrib><title>Patterning organic single-crystal transistor arrays</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Field-effect transistors made of organic single crystals are ideal for studying the charge transport characteristics of organic semiconductor materials. Their outstanding device performance, relative to that of transistors made of organic thin films, makes them also attractive candidates for electronic applications such as active matrix displays and sensor arrays. These applications require minimal cross-talk between neighbouring devices. In the case of thin film systems, simple patterning of the active semiconductor layer minimizes cross-talk. But when using organic single crystals, the only approach currently available for creating arrays of separate devices is manual selection and placing of individual crystals-a process prohibitive for producing devices at high density and with reasonable throughput. In contrast, inorganic crystals have been grown in extended arrays, and efficient and large-area fabrication of silicon crystalline islands with high mobilities for electronic applications has been reported. Here we describe a method for effectively fabricating large arrays of single crystals of a wide range of organic semiconductor materials directly onto transistor source-drain electrodes. We find that film domains of octadecyltriethoxysilane microcontact-printed onto either clean Si/SiO2 surfaces or flexible plastic provide control over the nucleation of vapour-grown organic single crystals. This allows us to fabricate large arrays of high-performance organic single-crystal field-effect transistors with mobilities as high as 2.4 cm2 V-1 s-1 and on/off ratios greater than 107, and devices on flexible substrates that retain their performance after significant bending. These results suggest that our fabrication approach constitutes a promising step that might ultimately allow us to utilize high-performance organic single-crystal field-effect transistors for large-area electronics applications.</description><subject>Applied sciences</subject><subject>Arrays</subject><subject>Crystals</subject><subject>Devices</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>Islands</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Nucleation</subject><subject>Organic chemicals</subject><subject>Patterning</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Single crystals</subject><subject>Thin films</subject><subject>Transistors</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0s1v0zAYBnALMbFSOHFHBQkEggx_2zlW1RiTJkAwxDFyHSfylDqd7Uj0v-dFqdYWFZYcoji_PEmevAg9I_iMYKY_BJOH6LDgVD1AE8KVLLjU6iGaYEx1gTWTp-hxSjcYY0EUf4ROiSJScU0niH01ObsYfGhnfWxN8HaW4KRzhY2blE03y9GE5FPu48zEaDbpCTppTJfc0-1xin58PL9efCquvlxcLuZXhVWc50KXqhbSEcslFQ3ninJreGkcdY0SghNhraCKLAnRspFLg7mFDTc106RmhE3R6zF3HfvbwaVcrXyyrutMcP2QKqkpV4SJeyGT8NmyxADf_BcSJZiAV8P8foo1JVpALtCXf9GbfogBqqko5oIyDf9giooRtaZzlQ9ND73a1gUXTdcH13hYnkMiFKXKchd64O3a31b76OwIgr12K2-Ppr49uAFMdr9ya4aUqsvv3w7tu3_b-fXPxeej2sY-peiaah39ysQNNFX9mdNqb05BP99WNixXrt7Z7WACeLUFJlnTNTCD1qedg6HGrGTg3o8uwaXQurjr_vhzX4x8XLzL2ze_AfDTBb4</recordid><startdate>20061214</startdate><enddate>20061214</enddate><creator>Bao, Zhenan</creator><creator>Briseno, Alejandro L</creator><creator>Mannsfeld, Stefan C. B</creator><creator>Ling, Mang M</creator><creator>Liu, Shuhong</creator><creator>Tseng, Ricky J</creator><creator>Reese, Colin</creator><creator>Roberts, Mark E</creator><creator>Yang, Yang</creator><creator>Wudl, Fred</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope><scope>7SC</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20061214</creationdate><title>Patterning organic single-crystal transistor arrays</title><author>Bao, Zhenan ; Briseno, Alejandro L ; Mannsfeld, Stefan C. B ; Ling, Mang M ; Liu, Shuhong ; Tseng, Ricky J ; Reese, Colin ; Roberts, Mark E ; Yang, Yang ; Wudl, Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c744t-897d56e1c4625f44724ca49ae2ef755415cc5271b1186f6ba04cccc0fd381d313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Arrays</topic><topic>Crystals</topic><topic>Devices</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>Islands</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Nucleation</topic><topic>Organic chemicals</topic><topic>Patterning</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Single crystals</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Zhenan</creatorcontrib><creatorcontrib>Briseno, Alejandro L</creatorcontrib><creatorcontrib>Mannsfeld, Stefan C. B</creatorcontrib><creatorcontrib>Ling, Mang M</creatorcontrib><creatorcontrib>Liu, Shuhong</creatorcontrib><creatorcontrib>Tseng, Ricky J</creatorcontrib><creatorcontrib>Reese, Colin</creatorcontrib><creatorcontrib>Roberts, Mark E</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Wudl, Fred</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Zhenan</au><au>Briseno, Alejandro L</au><au>Mannsfeld, Stefan C. B</au><au>Ling, Mang M</au><au>Liu, Shuhong</au><au>Tseng, Ricky J</au><au>Reese, Colin</au><au>Roberts, Mark E</au><au>Yang, Yang</au><au>Wudl, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterning organic single-crystal transistor arrays</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2006-12-14</date><risdate>2006</risdate><volume>444</volume><issue>7121</issue><spage>913</spage><epage>917</epage><pages>913-917</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><eissn>1476-4679</eissn><coden>NATUAS</coden><abstract>Field-effect transistors made of organic single crystals are ideal for studying the charge transport characteristics of organic semiconductor materials. Their outstanding device performance, relative to that of transistors made of organic thin films, makes them also attractive candidates for electronic applications such as active matrix displays and sensor arrays. These applications require minimal cross-talk between neighbouring devices. In the case of thin film systems, simple patterning of the active semiconductor layer minimizes cross-talk. But when using organic single crystals, the only approach currently available for creating arrays of separate devices is manual selection and placing of individual crystals-a process prohibitive for producing devices at high density and with reasonable throughput. In contrast, inorganic crystals have been grown in extended arrays, and efficient and large-area fabrication of silicon crystalline islands with high mobilities for electronic applications has been reported. Here we describe a method for effectively fabricating large arrays of single crystals of a wide range of organic semiconductor materials directly onto transistor source-drain electrodes. We find that film domains of octadecyltriethoxysilane microcontact-printed onto either clean Si/SiO2 surfaces or flexible plastic provide control over the nucleation of vapour-grown organic single crystals. This allows us to fabricate large arrays of high-performance organic single-crystal field-effect transistors with mobilities as high as 2.4 cm2 V-1 s-1 and on/off ratios greater than 107, and devices on flexible substrates that retain their performance after significant bending. These results suggest that our fabrication approach constitutes a promising step that might ultimately allow us to utilize high-performance organic single-crystal field-effect transistors for large-area electronics applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>17167482</pmid><doi>10.1038/nature05427</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2006-12, Vol.444 (7121), p.913-917 |
issn | 0028-0836 1476-4687 1476-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_68247135 |
source | Springer Nature - Connect here FIRST to enable access |
subjects | Applied sciences Arrays Crystals Devices Electrodes Electronics Exact sciences and technology Fabrication Humanities and Social Sciences Islands letter multidisciplinary Nucleation Organic chemicals Patterning Science Science (multidisciplinary) Semiconductor devices Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors Silicon Single crystals Thin films Transistors |
title | Patterning organic single-crystal transistor arrays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterning%20organic%20single-crystal%20transistor%20arrays&rft.jtitle=Nature&rft.au=Bao,%20Zhenan&rft.date=2006-12-14&rft.volume=444&rft.issue=7121&rft.spage=913&rft.epage=917&rft.pages=913-917&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature05427&rft_dat=%3Cgale_proqu%3EA185447799%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c744t-897d56e1c4625f44724ca49ae2ef755415cc5271b1186f6ba04cccc0fd381d313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204523808&rft_id=info:pmid/17167482&rft_galeid=A185447799&rfr_iscdi=true |