Loading…
Slow Manifold Structure in Explosive Kinetics. 1. Bifurcations of Points-at-Infinity in Prototypical Models
This article analyzes in detail the global geometric properties (structure of the slow and fast manifolds) of prototypical models of explosive kinetics (the Semenov model for thermal explosion and the chain-branching model). The concepts of global or generalized slow manifolds and the notions of het...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2006-12, Vol.110 (50), p.13447-13462 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a351t-452c2665bca60685b28c9a59854a3b67c67385d0d4ce2146c1a8eb266af271683 |
---|---|
cites | cdi_FETCH-LOGICAL-a351t-452c2665bca60685b28c9a59854a3b67c67385d0d4ce2146c1a8eb266af271683 |
container_end_page | 13462 |
container_issue | 50 |
container_start_page | 13447 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 110 |
creator | Creta, F Adrover, A Cerbelli, S Valorani, M Giona, M |
description | This article analyzes in detail the global geometric properties (structure of the slow and fast manifolds) of prototypical models of explosive kinetics (the Semenov model for thermal explosion and the chain-branching model). The concepts of global or generalized slow manifolds and the notions of heterogeneity and α−ω inversion for invariant manifolds are introduced in order to classify the different geometric features exhibited by two-dimensional kinetic schemes by varying model parameters and to explain the phenomena that may occur in model reduction practice. This classification stems from the definition of suitable Lyapunov-type numbers and from the analysis of normal-to-tangent stretching rates. In the case of the Semenov model, we show that the existence of a global slow manifold and its properties are controlled by a transcritical bifurcation of the points-at-infinity, which can be readily identified by analyzing the Poincaré projected system. The issue of slow manifold uniqueness and the implications of the theory with regard to the practical definition of explosion limits are thoroughly addressed. |
doi_str_mv | 10.1021/jp0636064 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68248823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68248823</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-452c2665bca60685b28c9a59854a3b67c67385d0d4ce2146c1a8eb266af271683</originalsourceid><addsrcrecordid>eNptkM1O6zAQhS0EAi6w4AWQNyDdRYp_YsddAoILgkKhsLYcx5FcUjvYDtC3v0atYMNqRprvzMw5ABxiNMKI4NN5jzjliJcbYBczggpGMNvMPRLjgnE63gF_YpwjhDAl5TbYwRXmTFRoF7zOOv8BJ8rZ1ncNnKUw6DQEA62Dl59956N9N_DWOpOsjiOIR_DctkPQKlnvIvQtnHrrUixUKm5ca51Nyy_xNPjk07K3WnVw4hvTxX2w1aoumoN13QMvV5fPF9fF3cO_m4uzu0JRhlNRMqIJ56zWKnsSrCZCjxUbC1YqWvNK84oK1qCm1IbgkmushKmzQrUk-xJ0D5ys9vbBvw0mJrmwUZuuU874IUouSCkEoRn8uwJ18DEG08o-2IUKS4mR_EpWfieb2aP10qFemOaHXEeZgWIF2JjM5_dchVeZH66YfJ7OJL1_5E8TfCXPM3-84pWOcu6H4HImvxz-Dxepjd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68248823</pqid></control><display><type>article</type><title>Slow Manifold Structure in Explosive Kinetics. 1. Bifurcations of Points-at-Infinity in Prototypical Models</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Creta, F ; Adrover, A ; Cerbelli, S ; Valorani, M ; Giona, M</creator><creatorcontrib>Creta, F ; Adrover, A ; Cerbelli, S ; Valorani, M ; Giona, M</creatorcontrib><description>This article analyzes in detail the global geometric properties (structure of the slow and fast manifolds) of prototypical models of explosive kinetics (the Semenov model for thermal explosion and the chain-branching model). The concepts of global or generalized slow manifolds and the notions of heterogeneity and α−ω inversion for invariant manifolds are introduced in order to classify the different geometric features exhibited by two-dimensional kinetic schemes by varying model parameters and to explain the phenomena that may occur in model reduction practice. This classification stems from the definition of suitable Lyapunov-type numbers and from the analysis of normal-to-tangent stretching rates. In the case of the Semenov model, we show that the existence of a global slow manifold and its properties are controlled by a transcritical bifurcation of the points-at-infinity, which can be readily identified by analyzing the Poincaré projected system. The issue of slow manifold uniqueness and the implications of the theory with regard to the practical definition of explosion limits are thoroughly addressed.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp0636064</identifier><identifier>PMID: 17165870</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2006-12, Vol.110 (50), p.13447-13462</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-452c2665bca60685b28c9a59854a3b67c67385d0d4ce2146c1a8eb266af271683</citedby><cites>FETCH-LOGICAL-a351t-452c2665bca60685b28c9a59854a3b67c67385d0d4ce2146c1a8eb266af271683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17165870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Creta, F</creatorcontrib><creatorcontrib>Adrover, A</creatorcontrib><creatorcontrib>Cerbelli, S</creatorcontrib><creatorcontrib>Valorani, M</creatorcontrib><creatorcontrib>Giona, M</creatorcontrib><title>Slow Manifold Structure in Explosive Kinetics. 1. Bifurcations of Points-at-Infinity in Prototypical Models</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>This article analyzes in detail the global geometric properties (structure of the slow and fast manifolds) of prototypical models of explosive kinetics (the Semenov model for thermal explosion and the chain-branching model). The concepts of global or generalized slow manifolds and the notions of heterogeneity and α−ω inversion for invariant manifolds are introduced in order to classify the different geometric features exhibited by two-dimensional kinetic schemes by varying model parameters and to explain the phenomena that may occur in model reduction practice. This classification stems from the definition of suitable Lyapunov-type numbers and from the analysis of normal-to-tangent stretching rates. In the case of the Semenov model, we show that the existence of a global slow manifold and its properties are controlled by a transcritical bifurcation of the points-at-infinity, which can be readily identified by analyzing the Poincaré projected system. The issue of slow manifold uniqueness and the implications of the theory with regard to the practical definition of explosion limits are thoroughly addressed.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNptkM1O6zAQhS0EAi6w4AWQNyDdRYp_YsddAoILgkKhsLYcx5FcUjvYDtC3v0atYMNqRprvzMw5ABxiNMKI4NN5jzjliJcbYBczggpGMNvMPRLjgnE63gF_YpwjhDAl5TbYwRXmTFRoF7zOOv8BJ8rZ1ncNnKUw6DQEA62Dl59956N9N_DWOpOsjiOIR_DctkPQKlnvIvQtnHrrUixUKm5ca51Nyy_xNPjk07K3WnVw4hvTxX2w1aoumoN13QMvV5fPF9fF3cO_m4uzu0JRhlNRMqIJ56zWKnsSrCZCjxUbC1YqWvNK84oK1qCm1IbgkmushKmzQrUk-xJ0D5ys9vbBvw0mJrmwUZuuU874IUouSCkEoRn8uwJ18DEG08o-2IUKS4mR_EpWfieb2aP10qFemOaHXEeZgWIF2JjM5_dchVeZH66YfJ7OJL1_5E8TfCXPM3-84pWOcu6H4HImvxz-Dxepjd4</recordid><startdate>20061221</startdate><enddate>20061221</enddate><creator>Creta, F</creator><creator>Adrover, A</creator><creator>Cerbelli, S</creator><creator>Valorani, M</creator><creator>Giona, M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061221</creationdate><title>Slow Manifold Structure in Explosive Kinetics. 1. Bifurcations of Points-at-Infinity in Prototypical Models</title><author>Creta, F ; Adrover, A ; Cerbelli, S ; Valorani, M ; Giona, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-452c2665bca60685b28c9a59854a3b67c67385d0d4ce2146c1a8eb266af271683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creta, F</creatorcontrib><creatorcontrib>Adrover, A</creatorcontrib><creatorcontrib>Cerbelli, S</creatorcontrib><creatorcontrib>Valorani, M</creatorcontrib><creatorcontrib>Giona, M</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creta, F</au><au>Adrover, A</au><au>Cerbelli, S</au><au>Valorani, M</au><au>Giona, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow Manifold Structure in Explosive Kinetics. 1. Bifurcations of Points-at-Infinity in Prototypical Models</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2006-12-21</date><risdate>2006</risdate><volume>110</volume><issue>50</issue><spage>13447</spage><epage>13462</epage><pages>13447-13462</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>This article analyzes in detail the global geometric properties (structure of the slow and fast manifolds) of prototypical models of explosive kinetics (the Semenov model for thermal explosion and the chain-branching model). The concepts of global or generalized slow manifolds and the notions of heterogeneity and α−ω inversion for invariant manifolds are introduced in order to classify the different geometric features exhibited by two-dimensional kinetic schemes by varying model parameters and to explain the phenomena that may occur in model reduction practice. This classification stems from the definition of suitable Lyapunov-type numbers and from the analysis of normal-to-tangent stretching rates. In the case of the Semenov model, we show that the existence of a global slow manifold and its properties are controlled by a transcritical bifurcation of the points-at-infinity, which can be readily identified by analyzing the Poincaré projected system. The issue of slow manifold uniqueness and the implications of the theory with regard to the practical definition of explosion limits are thoroughly addressed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17165870</pmid><doi>10.1021/jp0636064</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2006-12, Vol.110 (50), p.13447-13462 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_68248823 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Slow Manifold Structure in Explosive Kinetics. 1. Bifurcations of Points-at-Infinity in Prototypical Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow%20Manifold%20Structure%20in%20Explosive%20Kinetics.%201.%20Bifurcations%20of%20Points-at-Infinity%20in%20Prototypical%20Models&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Creta,%20F&rft.date=2006-12-21&rft.volume=110&rft.issue=50&rft.spage=13447&rft.epage=13462&rft.pages=13447-13462&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp0636064&rft_dat=%3Cproquest_cross%3E68248823%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a351t-452c2665bca60685b28c9a59854a3b67c67385d0d4ce2146c1a8eb266af271683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68248823&rft_id=info:pmid/17165870&rfr_iscdi=true |