Loading…

Organic Bonding to Silicon via a Carbonyl Group:  New Insights from Atomic-Scale Images

The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon−organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2007-09, Vol.129 (37), p.11402-11407
Main Authors: Schofield, Steven R, Saraireh, Sherin A, Smith, Phillip V, Radny, Marian W, King, Bruce V
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3
cites cdi_FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3
container_end_page 11407
container_issue 37
container_start_page 11402
container_title Journal of the American Chemical Society
container_volume 129
creator Schofield, Steven R
Saraireh, Sherin A
Smith, Phillip V
Radny, Marian W
King, Bruce V
description The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon−organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density functional theory calculations to study the adsorption of a simple ketone [acetone; (CH3)2CO] to the silicon (001) surface. We show both bias and time-dependent STM images and their agreement with total energy DFT calculations, simulated STM images, and published spectroscopic data. We investigate the stability of the resulting adsorbate structures with respect to temperature and applied STM tip bias and current. We demonstrate the ability to convert from the kinetically favored single-dimer α-H cleavage adsorbate structure to thermodynamically favored bridge-bonded adsorbate structures. This can be performed for the entire surface using a thermal anneal or, for individual molecules, using the highly confined electron beam of the STM tip. We propose the use of the carbonyl functional group to tether organic molecules to silicon may lead to increased stability of the adsorbates with respect to current−voltage characterization. This has important implications for the creation of robust single-molecule devices.
doi_str_mv 10.1021/ja0719069
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68263183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68263183</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3</originalsourceid><addsrcrecordid>eNpt0Mtu1DAUBmCrAtGhsOAFkDdUYhHqS3xj145gGKlQ0MymK-vEcQYPSTy1E6A7tn3NPglBMyqbro6Ozqf_SD9Cryh5RwmjZ1sgihoizRGaUcFIISiTT9CMEMIKpSU_Rs9z3k5ryTR9ho6pUlSXWs_Q9VXaQB8cvoh9HfoNHiJehTa42OOfATDgOaQq9rctXqQ47t7f_7nDX_wvvOxz2HwfMm5S7PD5ELvgipWD1uNlBxufX6CnDbTZvzzME7T--GE9_1RcXi2W8_PLArigQwGsaaQktDRG0UoYTkAawoWvCFOMC0NBVY46U3NoiGPVJOsaQNRlaVjNT9DpPnaX4s3o82C7kJ1vW-h9HLOVmklONZ_g2z10KeacfGN3KXSQbi0l9l-N9qHGyb4-hI5V5-v_8tDbBIo9CHnwvx_ukH5YqbgSdv11ZRf6m1iIz9qWk3-z9-Cy3cYx9VMljzz-CwnphuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68263183</pqid></control><display><type>article</type><title>Organic Bonding to Silicon via a Carbonyl Group:  New Insights from Atomic-Scale Images</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Schofield, Steven R ; Saraireh, Sherin A ; Smith, Phillip V ; Radny, Marian W ; King, Bruce V</creator><creatorcontrib>Schofield, Steven R ; Saraireh, Sherin A ; Smith, Phillip V ; Radny, Marian W ; King, Bruce V</creatorcontrib><description>The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon−organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density functional theory calculations to study the adsorption of a simple ketone [acetone; (CH3)2CO] to the silicon (001) surface. We show both bias and time-dependent STM images and their agreement with total energy DFT calculations, simulated STM images, and published spectroscopic data. We investigate the stability of the resulting adsorbate structures with respect to temperature and applied STM tip bias and current. We demonstrate the ability to convert from the kinetically favored single-dimer α-H cleavage adsorbate structure to thermodynamically favored bridge-bonded adsorbate structures. This can be performed for the entire surface using a thermal anneal or, for individual molecules, using the highly confined electron beam of the STM tip. We propose the use of the carbonyl functional group to tether organic molecules to silicon may lead to increased stability of the adsorbates with respect to current−voltage characterization. This has important implications for the creation of robust single-molecule devices.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja0719069</identifier><identifier>PMID: 17718488</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2007-09, Vol.129 (37), p.11402-11407</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3</citedby><cites>FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17718488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schofield, Steven R</creatorcontrib><creatorcontrib>Saraireh, Sherin A</creatorcontrib><creatorcontrib>Smith, Phillip V</creatorcontrib><creatorcontrib>Radny, Marian W</creatorcontrib><creatorcontrib>King, Bruce V</creatorcontrib><title>Organic Bonding to Silicon via a Carbonyl Group:  New Insights from Atomic-Scale Images</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon−organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density functional theory calculations to study the adsorption of a simple ketone [acetone; (CH3)2CO] to the silicon (001) surface. We show both bias and time-dependent STM images and their agreement with total energy DFT calculations, simulated STM images, and published spectroscopic data. We investigate the stability of the resulting adsorbate structures with respect to temperature and applied STM tip bias and current. We demonstrate the ability to convert from the kinetically favored single-dimer α-H cleavage adsorbate structure to thermodynamically favored bridge-bonded adsorbate structures. This can be performed for the entire surface using a thermal anneal or, for individual molecules, using the highly confined electron beam of the STM tip. We propose the use of the carbonyl functional group to tether organic molecules to silicon may lead to increased stability of the adsorbates with respect to current−voltage characterization. This has important implications for the creation of robust single-molecule devices.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0Mtu1DAUBmCrAtGhsOAFkDdUYhHqS3xj145gGKlQ0MymK-vEcQYPSTy1E6A7tn3NPglBMyqbro6Ozqf_SD9Cryh5RwmjZ1sgihoizRGaUcFIISiTT9CMEMIKpSU_Rs9z3k5ryTR9ho6pUlSXWs_Q9VXaQB8cvoh9HfoNHiJehTa42OOfATDgOaQq9rctXqQ47t7f_7nDX_wvvOxz2HwfMm5S7PD5ELvgipWD1uNlBxufX6CnDbTZvzzME7T--GE9_1RcXi2W8_PLArigQwGsaaQktDRG0UoYTkAawoWvCFOMC0NBVY46U3NoiGPVJOsaQNRlaVjNT9DpPnaX4s3o82C7kJ1vW-h9HLOVmklONZ_g2z10KeacfGN3KXSQbi0l9l-N9qHGyb4-hI5V5-v_8tDbBIo9CHnwvx_ukH5YqbgSdv11ZRf6m1iIz9qWk3-z9-Cy3cYx9VMljzz-CwnphuM</recordid><startdate>20070919</startdate><enddate>20070919</enddate><creator>Schofield, Steven R</creator><creator>Saraireh, Sherin A</creator><creator>Smith, Phillip V</creator><creator>Radny, Marian W</creator><creator>King, Bruce V</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070919</creationdate><title>Organic Bonding to Silicon via a Carbonyl Group:  New Insights from Atomic-Scale Images</title><author>Schofield, Steven R ; Saraireh, Sherin A ; Smith, Phillip V ; Radny, Marian W ; King, Bruce V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schofield, Steven R</creatorcontrib><creatorcontrib>Saraireh, Sherin A</creatorcontrib><creatorcontrib>Smith, Phillip V</creatorcontrib><creatorcontrib>Radny, Marian W</creatorcontrib><creatorcontrib>King, Bruce V</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schofield, Steven R</au><au>Saraireh, Sherin A</au><au>Smith, Phillip V</au><au>Radny, Marian W</au><au>King, Bruce V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Bonding to Silicon via a Carbonyl Group:  New Insights from Atomic-Scale Images</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2007-09-19</date><risdate>2007</risdate><volume>129</volume><issue>37</issue><spage>11402</spage><epage>11407</epage><pages>11402-11407</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon−organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density functional theory calculations to study the adsorption of a simple ketone [acetone; (CH3)2CO] to the silicon (001) surface. We show both bias and time-dependent STM images and their agreement with total energy DFT calculations, simulated STM images, and published spectroscopic data. We investigate the stability of the resulting adsorbate structures with respect to temperature and applied STM tip bias and current. We demonstrate the ability to convert from the kinetically favored single-dimer α-H cleavage adsorbate structure to thermodynamically favored bridge-bonded adsorbate structures. This can be performed for the entire surface using a thermal anneal or, for individual molecules, using the highly confined electron beam of the STM tip. We propose the use of the carbonyl functional group to tether organic molecules to silicon may lead to increased stability of the adsorbates with respect to current−voltage characterization. This has important implications for the creation of robust single-molecule devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17718488</pmid><doi>10.1021/ja0719069</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2007-09, Vol.129 (37), p.11402-11407
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_68263183
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Organic Bonding to Silicon via a Carbonyl Group:  New Insights from Atomic-Scale Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Bonding%20to%20Silicon%20via%20a%20Carbonyl%20Group:%E2%80%89%20New%20Insights%20from%20Atomic-Scale%20Images&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Schofield,%20Steven%20R&rft.date=2007-09-19&rft.volume=129&rft.issue=37&rft.spage=11402&rft.epage=11407&rft.pages=11402-11407&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja0719069&rft_dat=%3Cproquest_cross%3E68263183%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68263183&rft_id=info:pmid/17718488&rfr_iscdi=true