Loading…
Organic Bonding to Silicon via a Carbonyl Group: New Insights from Atomic-Scale Images
The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon−organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density...
Saved in:
Published in: | Journal of the American Chemical Society 2007-09, Vol.129 (37), p.11402-11407 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3 |
container_end_page | 11407 |
container_issue | 37 |
container_start_page | 11402 |
container_title | Journal of the American Chemical Society |
container_volume | 129 |
creator | Schofield, Steven R Saraireh, Sherin A Smith, Phillip V Radny, Marian W King, Bruce V |
description | The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon−organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density functional theory calculations to study the adsorption of a simple ketone [acetone; (CH3)2CO] to the silicon (001) surface. We show both bias and time-dependent STM images and their agreement with total energy DFT calculations, simulated STM images, and published spectroscopic data. We investigate the stability of the resulting adsorbate structures with respect to temperature and applied STM tip bias and current. We demonstrate the ability to convert from the kinetically favored single-dimer α-H cleavage adsorbate structure to thermodynamically favored bridge-bonded adsorbate structures. This can be performed for the entire surface using a thermal anneal or, for individual molecules, using the highly confined electron beam of the STM tip. We propose the use of the carbonyl functional group to tether organic molecules to silicon may lead to increased stability of the adsorbates with respect to current−voltage characterization. This has important implications for the creation of robust single-molecule devices. |
doi_str_mv | 10.1021/ja0719069 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68263183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68263183</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3</originalsourceid><addsrcrecordid>eNpt0Mtu1DAUBmCrAtGhsOAFkDdUYhHqS3xj145gGKlQ0MymK-vEcQYPSTy1E6A7tn3NPglBMyqbro6Ozqf_SD9Cryh5RwmjZ1sgihoizRGaUcFIISiTT9CMEMIKpSU_Rs9z3k5ryTR9ho6pUlSXWs_Q9VXaQB8cvoh9HfoNHiJehTa42OOfATDgOaQq9rctXqQ47t7f_7nDX_wvvOxz2HwfMm5S7PD5ELvgipWD1uNlBxufX6CnDbTZvzzME7T--GE9_1RcXi2W8_PLArigQwGsaaQktDRG0UoYTkAawoWvCFOMC0NBVY46U3NoiGPVJOsaQNRlaVjNT9DpPnaX4s3o82C7kJ1vW-h9HLOVmklONZ_g2z10KeacfGN3KXSQbi0l9l-N9qHGyb4-hI5V5-v_8tDbBIo9CHnwvx_ukH5YqbgSdv11ZRf6m1iIz9qWk3-z9-Cy3cYx9VMljzz-CwnphuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68263183</pqid></control><display><type>article</type><title>Organic Bonding to Silicon via a Carbonyl Group: New Insights from Atomic-Scale Images</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Schofield, Steven R ; Saraireh, Sherin A ; Smith, Phillip V ; Radny, Marian W ; King, Bruce V</creator><creatorcontrib>Schofield, Steven R ; Saraireh, Sherin A ; Smith, Phillip V ; Radny, Marian W ; King, Bruce V</creatorcontrib><description>The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon−organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density functional theory calculations to study the adsorption of a simple ketone [acetone; (CH3)2CO] to the silicon (001) surface. We show both bias and time-dependent STM images and their agreement with total energy DFT calculations, simulated STM images, and published spectroscopic data. We investigate the stability of the resulting adsorbate structures with respect to temperature and applied STM tip bias and current. We demonstrate the ability to convert from the kinetically favored single-dimer α-H cleavage adsorbate structure to thermodynamically favored bridge-bonded adsorbate structures. This can be performed for the entire surface using a thermal anneal or, for individual molecules, using the highly confined electron beam of the STM tip. We propose the use of the carbonyl functional group to tether organic molecules to silicon may lead to increased stability of the adsorbates with respect to current−voltage characterization. This has important implications for the creation of robust single-molecule devices.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja0719069</identifier><identifier>PMID: 17718488</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2007-09, Vol.129 (37), p.11402-11407</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3</citedby><cites>FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17718488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schofield, Steven R</creatorcontrib><creatorcontrib>Saraireh, Sherin A</creatorcontrib><creatorcontrib>Smith, Phillip V</creatorcontrib><creatorcontrib>Radny, Marian W</creatorcontrib><creatorcontrib>King, Bruce V</creatorcontrib><title>Organic Bonding to Silicon via a Carbonyl Group: New Insights from Atomic-Scale Images</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon−organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density functional theory calculations to study the adsorption of a simple ketone [acetone; (CH3)2CO] to the silicon (001) surface. We show both bias and time-dependent STM images and their agreement with total energy DFT calculations, simulated STM images, and published spectroscopic data. We investigate the stability of the resulting adsorbate structures with respect to temperature and applied STM tip bias and current. We demonstrate the ability to convert from the kinetically favored single-dimer α-H cleavage adsorbate structure to thermodynamically favored bridge-bonded adsorbate structures. This can be performed for the entire surface using a thermal anneal or, for individual molecules, using the highly confined electron beam of the STM tip. We propose the use of the carbonyl functional group to tether organic molecules to silicon may lead to increased stability of the adsorbates with respect to current−voltage characterization. This has important implications for the creation of robust single-molecule devices.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0Mtu1DAUBmCrAtGhsOAFkDdUYhHqS3xj145gGKlQ0MymK-vEcQYPSTy1E6A7tn3NPglBMyqbro6Ozqf_SD9Cryh5RwmjZ1sgihoizRGaUcFIISiTT9CMEMIKpSU_Rs9z3k5ryTR9ho6pUlSXWs_Q9VXaQB8cvoh9HfoNHiJehTa42OOfATDgOaQq9rctXqQ47t7f_7nDX_wvvOxz2HwfMm5S7PD5ELvgipWD1uNlBxufX6CnDbTZvzzME7T--GE9_1RcXi2W8_PLArigQwGsaaQktDRG0UoYTkAawoWvCFOMC0NBVY46U3NoiGPVJOsaQNRlaVjNT9DpPnaX4s3o82C7kJ1vW-h9HLOVmklONZ_g2z10KeacfGN3KXSQbi0l9l-N9qHGyb4-hI5V5-v_8tDbBIo9CHnwvx_ukH5YqbgSdv11ZRf6m1iIz9qWk3-z9-Cy3cYx9VMljzz-CwnphuM</recordid><startdate>20070919</startdate><enddate>20070919</enddate><creator>Schofield, Steven R</creator><creator>Saraireh, Sherin A</creator><creator>Smith, Phillip V</creator><creator>Radny, Marian W</creator><creator>King, Bruce V</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070919</creationdate><title>Organic Bonding to Silicon via a Carbonyl Group: New Insights from Atomic-Scale Images</title><author>Schofield, Steven R ; Saraireh, Sherin A ; Smith, Phillip V ; Radny, Marian W ; King, Bruce V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schofield, Steven R</creatorcontrib><creatorcontrib>Saraireh, Sherin A</creatorcontrib><creatorcontrib>Smith, Phillip V</creatorcontrib><creatorcontrib>Radny, Marian W</creatorcontrib><creatorcontrib>King, Bruce V</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schofield, Steven R</au><au>Saraireh, Sherin A</au><au>Smith, Phillip V</au><au>Radny, Marian W</au><au>King, Bruce V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Bonding to Silicon via a Carbonyl Group: New Insights from Atomic-Scale Images</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2007-09-19</date><risdate>2007</risdate><volume>129</volume><issue>37</issue><spage>11402</spage><epage>11407</epage><pages>11402-11407</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The ability to covalently attach organic molecules to semiconductor surfaces in a controllable and selective manner is currently receiving much attention due to the potential for creating hybrid silicon−organic molecular-electronic devices. Here we use scanning tunneling microscopy (STM) and density functional theory calculations to study the adsorption of a simple ketone [acetone; (CH3)2CO] to the silicon (001) surface. We show both bias and time-dependent STM images and their agreement with total energy DFT calculations, simulated STM images, and published spectroscopic data. We investigate the stability of the resulting adsorbate structures with respect to temperature and applied STM tip bias and current. We demonstrate the ability to convert from the kinetically favored single-dimer α-H cleavage adsorbate structure to thermodynamically favored bridge-bonded adsorbate structures. This can be performed for the entire surface using a thermal anneal or, for individual molecules, using the highly confined electron beam of the STM tip. We propose the use of the carbonyl functional group to tether organic molecules to silicon may lead to increased stability of the adsorbates with respect to current−voltage characterization. This has important implications for the creation of robust single-molecule devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17718488</pmid><doi>10.1021/ja0719069</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2007-09, Vol.129 (37), p.11402-11407 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_68263183 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Organic Bonding to Silicon via a Carbonyl Group: New Insights from Atomic-Scale Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Bonding%20to%20Silicon%20via%20a%20Carbonyl%20Group:%E2%80%89%20New%20Insights%20from%20Atomic-Scale%20Images&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Schofield,%20Steven%20R&rft.date=2007-09-19&rft.volume=129&rft.issue=37&rft.spage=11402&rft.epage=11407&rft.pages=11402-11407&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja0719069&rft_dat=%3Cproquest_cross%3E68263183%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a351t-a2ff660149971b5930a69035eb02723591a7bc1c9d3af0c2b149ddaa5d4492d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68263183&rft_id=info:pmid/17718488&rfr_iscdi=true |