Loading…

Mature monomeric forms of Hop stunt viroid resist RNA silencing in transgenic plants

Viroids, small non-coding pathogenic RNAs, are able to induce RNA silencing, a phenomenon that has been associated with the pathogenesis and evolution of these small RNAs. It has been recently suggested that viroids may resist this plant defense mechanism. However, the simultaneous degradation of no...

Full description

Saved in:
Bibliographic Details
Published in:The Plant journal : for cell and molecular biology 2007-09, Vol.51 (6), p.1041-1049
Main Authors: GOMEZ, G, PALLAS, V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Viroids, small non-coding pathogenic RNAs, are able to induce RNA silencing, a phenomenon that has been associated with the pathogenesis and evolution of these small RNAs. It has been recently suggested that viroids may resist this plant defense mechanism. However, the simultaneous degradation of non-replicating full-length viroid RNA, and the resistance of mature forms of viroids to RNA silencing, have not been experimentally demonstrated. Transgenic Nicotiana benthamiana plants expressing a dimeric form of Hop stunt viroid (HSVd) that have the capability to cleave and circularize this viroid RNA were used to address this question. A reporter construct, consisting of a full-length HSVd RNA fused to GFP-mRNA, was agroinfiltrated in these plants and its expression was suppressed. Interestingly, both circular and linear HSVd molecules were stable and able to traffic through grafts in these restrictive conditions, indicating that the mature forms of HSVd are able, in some way, to resist the RNA-silencing mechanism. The observation that a full-length HSVd RNA fused to GFP-mRNA, but not circular and/or linear viroid forms, was fully susceptible to RNA degradation strongly suggests that structures adopted by the free mature monomer protect the pathogenesis-associated forms of the viroid from RNA silencing.
ISSN:0960-7412
1365-313X
DOI:10.1111/j.1365-313X.2007.03203.x