Loading…

Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks

A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRW...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics 2006-12, Vol.36 (6), p.1342-1355
Main Authors: Yoo, Sung Jin, Park, Jin Bae, Choi, Yoon Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703
cites cdi_FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703
container_end_page 1355
container_issue 6
container_start_page 1342
container_title IEEE transactions on cybernetics
container_volume 36
creator Yoo, Sung Jin
Park, Jin Bae
Choi, Yoon Ho
description A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system
doi_str_mv 10.1109/TSMCB.2006.875869
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_68264569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4015548</ieee_id><sourcerecordid>896187577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703</originalsourceid><addsrcrecordid>eNp9kd1rFDEQwIMo_bJ_gBRK8KE-7TnZzebjsZ7WD2oLvRYfQzY3KVtzmzPZrfa_N_UOhT4IAzMwvxmY-RHyisGMMdBvrxdf5-9mNYCYKdkqoZ-RPaY5q4Dr-nmpQTUV50zvkv2c7wBAg5Y7ZJdJpoRisEf86dKux_4e6fuHwa56RxdT8tYhncdhTDHQ6OlZwF99F7D6EvthpFexi2OmN7kfbukCg6-u0E0pYel9s_cYcKQXOCUbShp_xvQ9vyQvvA0ZD7f5gNycfbief6rOLz9-np-eV45zPlZN1yHoDnGJgL6RXovOKQH1suYeeKMUE5bbzlonBTQATIGwdQkrhJPQHJA3m73rFH9MmEez6rPDEOyAccpGacHKq6Qs5Ml_SaFqwVuhC_j6CXgXpzSUK4wSrWw4SFEgtoFcijkn9Gad-pVND4aBeXRl_rgyj67MxlWZOd4unroVLv9NbOUU4GgD9Ij4t82BtS1XzW9zWpgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865734076</pqid></control><display><type>article</type><title>Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yoo, Sung Jin ; Park, Jin Bae ; Choi, Yoon Ho</creator><creatorcontrib>Yoo, Sung Jin ; Park, Jin Bae ; Choi, Yoon Ho</creatorcontrib><description>A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2006.875869</identifier><identifier>PMID: 17186810</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Actuators ; Adaptive control ; Adaptive control systems ; Computer simulation ; Control systems ; Dynamic surface control (DSC) ; Dynamical systems ; Dynamics ; Explosions ; flexible-joint robots ; Neural networks ; Programmable control ; Robot control ; Robots ; Robust control ; self-recurrent wavelet neural network (SRWNN) ; Surface waves ; Uncertainty</subject><ispartof>IEEE transactions on cybernetics, 2006-12, Vol.36 (6), p.1342-1355</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703</citedby><cites>FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4015548$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17186810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoo, Sung Jin</creatorcontrib><creatorcontrib>Park, Jin Bae</creatorcontrib><creatorcontrib>Choi, Yoon Ho</creatorcontrib><title>Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>Adaptive control systems</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Dynamic surface control (DSC)</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Explosions</subject><subject>flexible-joint robots</subject><subject>Neural networks</subject><subject>Programmable control</subject><subject>Robot control</subject><subject>Robots</subject><subject>Robust control</subject><subject>self-recurrent wavelet neural network (SRWNN)</subject><subject>Surface waves</subject><subject>Uncertainty</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kd1rFDEQwIMo_bJ_gBRK8KE-7TnZzebjsZ7WD2oLvRYfQzY3KVtzmzPZrfa_N_UOhT4IAzMwvxmY-RHyisGMMdBvrxdf5-9mNYCYKdkqoZ-RPaY5q4Dr-nmpQTUV50zvkv2c7wBAg5Y7ZJdJpoRisEf86dKux_4e6fuHwa56RxdT8tYhncdhTDHQ6OlZwF99F7D6EvthpFexi2OmN7kfbukCg6-u0E0pYel9s_cYcKQXOCUbShp_xvQ9vyQvvA0ZD7f5gNycfbief6rOLz9-np-eV45zPlZN1yHoDnGJgL6RXovOKQH1suYeeKMUE5bbzlonBTQATIGwdQkrhJPQHJA3m73rFH9MmEez6rPDEOyAccpGacHKq6Qs5Ml_SaFqwVuhC_j6CXgXpzSUK4wSrWw4SFEgtoFcijkn9Gad-pVND4aBeXRl_rgyj67MxlWZOd4unroVLv9NbOUU4GgD9Ij4t82BtS1XzW9zWpgE</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Yoo, Sung Jin</creator><creator>Park, Jin Bae</creator><creator>Choi, Yoon Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20061201</creationdate><title>Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks</title><author>Yoo, Sung Jin ; Park, Jin Bae ; Choi, Yoon Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>Adaptive control systems</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Dynamic surface control (DSC)</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Explosions</topic><topic>flexible-joint robots</topic><topic>Neural networks</topic><topic>Programmable control</topic><topic>Robot control</topic><topic>Robots</topic><topic>Robust control</topic><topic>self-recurrent wavelet neural network (SRWNN)</topic><topic>Surface waves</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Sung Jin</creatorcontrib><creatorcontrib>Park, Jin Bae</creatorcontrib><creatorcontrib>Choi, Yoon Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Sung Jin</au><au>Park, Jin Bae</au><au>Choi, Yoon Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>36</volume><issue>6</issue><spage>1342</spage><epage>1355</epage><pages>1342-1355</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17186810</pmid><doi>10.1109/TSMCB.2006.875869</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2006-12, Vol.36 (6), p.1342-1355
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_proquest_miscellaneous_68264569
source IEEE Electronic Library (IEL) Journals
subjects Actuators
Adaptive control
Adaptive control systems
Computer simulation
Control systems
Dynamic surface control (DSC)
Dynamical systems
Dynamics
Explosions
flexible-joint robots
Neural networks
Programmable control
Robot control
Robots
Robust control
self-recurrent wavelet neural network (SRWNN)
Surface waves
Uncertainty
title Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Dynamic%20Surface%20Control%20of%20Flexible-Joint%20Robots%20Using%20Self-Recurrent%20Wavelet%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Yoo,%20Sung%20Jin&rft.date=2006-12-01&rft.volume=36&rft.issue=6&rft.spage=1342&rft.epage=1355&rft.pages=1342-1355&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2006.875869&rft_dat=%3Cproquest_ieee_%3E896187577%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865734076&rft_id=info:pmid/17186810&rft_ieee_id=4015548&rfr_iscdi=true