Loading…
Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks
A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRW...
Saved in:
Published in: | IEEE transactions on cybernetics 2006-12, Vol.36 (6), p.1342-1355 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703 |
container_end_page | 1355 |
container_issue | 6 |
container_start_page | 1342 |
container_title | IEEE transactions on cybernetics |
container_volume | 36 |
creator | Yoo, Sung Jin Park, Jin Bae Choi, Yoon Ho |
description | A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system |
doi_str_mv | 10.1109/TSMCB.2006.875869 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_68264569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4015548</ieee_id><sourcerecordid>896187577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703</originalsourceid><addsrcrecordid>eNp9kd1rFDEQwIMo_bJ_gBRK8KE-7TnZzebjsZ7WD2oLvRYfQzY3KVtzmzPZrfa_N_UOhT4IAzMwvxmY-RHyisGMMdBvrxdf5-9mNYCYKdkqoZ-RPaY5q4Dr-nmpQTUV50zvkv2c7wBAg5Y7ZJdJpoRisEf86dKux_4e6fuHwa56RxdT8tYhncdhTDHQ6OlZwF99F7D6EvthpFexi2OmN7kfbukCg6-u0E0pYel9s_cYcKQXOCUbShp_xvQ9vyQvvA0ZD7f5gNycfbief6rOLz9-np-eV45zPlZN1yHoDnGJgL6RXovOKQH1suYeeKMUE5bbzlonBTQATIGwdQkrhJPQHJA3m73rFH9MmEez6rPDEOyAccpGacHKq6Qs5Ml_SaFqwVuhC_j6CXgXpzSUK4wSrWw4SFEgtoFcijkn9Gad-pVND4aBeXRl_rgyj67MxlWZOd4unroVLv9NbOUU4GgD9Ij4t82BtS1XzW9zWpgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865734076</pqid></control><display><type>article</type><title>Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yoo, Sung Jin ; Park, Jin Bae ; Choi, Yoon Ho</creator><creatorcontrib>Yoo, Sung Jin ; Park, Jin Bae ; Choi, Yoon Ho</creatorcontrib><description>A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2006.875869</identifier><identifier>PMID: 17186810</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Actuators ; Adaptive control ; Adaptive control systems ; Computer simulation ; Control systems ; Dynamic surface control (DSC) ; Dynamical systems ; Dynamics ; Explosions ; flexible-joint robots ; Neural networks ; Programmable control ; Robot control ; Robots ; Robust control ; self-recurrent wavelet neural network (SRWNN) ; Surface waves ; Uncertainty</subject><ispartof>IEEE transactions on cybernetics, 2006-12, Vol.36 (6), p.1342-1355</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703</citedby><cites>FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4015548$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17186810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoo, Sung Jin</creatorcontrib><creatorcontrib>Park, Jin Bae</creatorcontrib><creatorcontrib>Choi, Yoon Ho</creatorcontrib><title>Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>Adaptive control systems</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Dynamic surface control (DSC)</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Explosions</subject><subject>flexible-joint robots</subject><subject>Neural networks</subject><subject>Programmable control</subject><subject>Robot control</subject><subject>Robots</subject><subject>Robust control</subject><subject>self-recurrent wavelet neural network (SRWNN)</subject><subject>Surface waves</subject><subject>Uncertainty</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kd1rFDEQwIMo_bJ_gBRK8KE-7TnZzebjsZ7WD2oLvRYfQzY3KVtzmzPZrfa_N_UOhT4IAzMwvxmY-RHyisGMMdBvrxdf5-9mNYCYKdkqoZ-RPaY5q4Dr-nmpQTUV50zvkv2c7wBAg5Y7ZJdJpoRisEf86dKux_4e6fuHwa56RxdT8tYhncdhTDHQ6OlZwF99F7D6EvthpFexi2OmN7kfbukCg6-u0E0pYel9s_cYcKQXOCUbShp_xvQ9vyQvvA0ZD7f5gNycfbief6rOLz9-np-eV45zPlZN1yHoDnGJgL6RXovOKQH1suYeeKMUE5bbzlonBTQATIGwdQkrhJPQHJA3m73rFH9MmEez6rPDEOyAccpGacHKq6Qs5Ml_SaFqwVuhC_j6CXgXpzSUK4wSrWw4SFEgtoFcijkn9Gad-pVND4aBeXRl_rgyj67MxlWZOd4unroVLv9NbOUU4GgD9Ij4t82BtS1XzW9zWpgE</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Yoo, Sung Jin</creator><creator>Park, Jin Bae</creator><creator>Choi, Yoon Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20061201</creationdate><title>Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks</title><author>Yoo, Sung Jin ; Park, Jin Bae ; Choi, Yoon Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>Adaptive control systems</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Dynamic surface control (DSC)</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Explosions</topic><topic>flexible-joint robots</topic><topic>Neural networks</topic><topic>Programmable control</topic><topic>Robot control</topic><topic>Robots</topic><topic>Robust control</topic><topic>self-recurrent wavelet neural network (SRWNN)</topic><topic>Surface waves</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Sung Jin</creatorcontrib><creatorcontrib>Park, Jin Bae</creatorcontrib><creatorcontrib>Choi, Yoon Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Sung Jin</au><au>Park, Jin Bae</au><au>Choi, Yoon Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>36</volume><issue>6</issue><spage>1342</spage><epage>1355</epage><pages>1342-1355</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17186810</pmid><doi>10.1109/TSMCB.2006.875869</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4419 |
ispartof | IEEE transactions on cybernetics, 2006-12, Vol.36 (6), p.1342-1355 |
issn | 1083-4419 2168-2267 1941-0492 2168-2275 |
language | eng |
recordid | cdi_proquest_miscellaneous_68264569 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Actuators Adaptive control Adaptive control systems Computer simulation Control systems Dynamic surface control (DSC) Dynamical systems Dynamics Explosions flexible-joint robots Neural networks Programmable control Robot control Robots Robust control self-recurrent wavelet neural network (SRWNN) Surface waves Uncertainty |
title | Adaptive Dynamic Surface Control of Flexible-Joint Robots Using Self-Recurrent Wavelet Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Dynamic%20Surface%20Control%20of%20Flexible-Joint%20Robots%20Using%20Self-Recurrent%20Wavelet%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Yoo,%20Sung%20Jin&rft.date=2006-12-01&rft.volume=36&rft.issue=6&rft.spage=1342&rft.epage=1355&rft.pages=1342-1355&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2006.875869&rft_dat=%3Cproquest_ieee_%3E896187577%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-3bbe09beede0ef37f96bc8602d24f0438816a4abaac7603001806a26a2a66c703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865734076&rft_id=info:pmid/17186810&rft_ieee_id=4015548&rfr_iscdi=true |