Loading…
general integrative model for scaling plant growth, carbon flux, and functional trait spectra
Linking functional traits to plant growth is critical for scaling attributes of organisms to the dynamics of ecosystems and for understanding how selection shapes integrated botanical phenotypes. However, a general mechanistic theory showing how traits specifically influence carbon and biomass flux...
Saved in:
Published in: | Nature 2007-09, Vol.449 (7159), p.218-222 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c671t-e201ba4009520c02aef4970405df2bc2552995e366b62e854ef0961f9325127c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c671t-e201ba4009520c02aef4970405df2bc2552995e366b62e854ef0961f9325127c3 |
container_end_page | 222 |
container_issue | 7159 |
container_start_page | 218 |
container_title | Nature |
container_volume | 449 |
creator | Enquist, B.J Kerkhoff, A.J Stark, S.C Swenson, N.G McCarthy, M.C Price, C.A |
description | Linking functional traits to plant growth is critical for scaling attributes of organisms to the dynamics of ecosystems and for understanding how selection shapes integrated botanical phenotypes. However, a general mechanistic theory showing how traits specifically influence carbon and biomass flux within and across plants is needed. Building on foundational work on relative growth rate, recent work on functional trait spectra, and metabolic scaling theory, here we derive a generalized trait-based model of plant growth. In agreement with a wide variety of empirical data, our model uniquely predicts how key functional traits interact to regulate variation in relative growth rate, the allometric growth normalizations for both angiosperms and gymnosperms, and the quantitative form of several functional trait spectra relationships. The model also provides a general quantitative framework to incorporate additional leaf-level trait scaling relationships and hence to unite functional trait spectra with theories of relative growth rate, and metabolic scaling. We apply the model to calculate carbon use efficiency. This often ignored trait, which may influence variation in relative growth rate, appears to vary directionally across geographic gradients. Together, our results show how both quantitative plant traits and the geometry of vascular transport networks can be merged into a common scaling theory. Our model provides a framework for predicting not only how traits covary within an integrated allometric phenotype but also how trait variation mechanistically influences plant growth and carbon flux within and across diverse ecosystems. |
doi_str_mv | 10.1038/nature06061 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68266000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185191485</galeid><sourcerecordid>A185191485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-e201ba4009520c02aef4970405df2bc2552995e366b62e854ef0961f9325127c3</originalsourceid><addsrcrecordid>eNqF0s1v0zAYBvAIgdgYnLhDhgQC0YzXju3Yx6riY9IEEtvECUWuawdPqd3ZDoz_Hlep6IoKKIdEzi-PkydvUTxGcIKg5m-cTEPQwIChO8UhIg2rCOPN3eIQAPMKeM0OigcxXgEARQ25XxyghlNEMT0svnba6SD70rqkuyCT_a7LpV_ovjQ-lFHJ3rquXPXSpbIL_kf6NimVDHPvStMPN5NSukVpBqeS9S7npCBtKuNKq3z1sLhnZB_1o835qLh89_Zi9qE6-_T-dDY9qxRrUKo0BjSXBEBQDAqw1IaIBgjQhcFzhSnFQlBdMzZnWHNKtAHBkBE1pgg3qj4qXoy5q-CvBx1Tu7RR6T6_tfZDbBnHjOXPz_DlPyFqaE2E4IL8nwLHSECNWabP_qBXfgi5jdhiILQhNV_nVSPqZK9b64zPBalN_d5pY_PyFOUfIxDhdBu649XKXre30ckelI-FXlq1N_XVzgPZJH2TOjnE2J6ef961r_9upxdfZh_3ahV8jEGbdhXsUoafual2PajtrUHN-smmsmG-1Iut3UxmBs83QK6H0ATplI1bJ3IKJes_OhldzLdcp8O2-_37Ho98XPydt2uejsZI38ou5G0vz_OI1gCc8Ibw-hefhQ87</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204574384</pqid></control><display><type>article</type><title>general integrative model for scaling plant growth, carbon flux, and functional trait spectra</title><source>Nature</source><creator>Enquist, B.J ; Kerkhoff, A.J ; Stark, S.C ; Swenson, N.G ; McCarthy, M.C ; Price, C.A</creator><creatorcontrib>Enquist, B.J ; Kerkhoff, A.J ; Stark, S.C ; Swenson, N.G ; McCarthy, M.C ; Price, C.A</creatorcontrib><description>Linking functional traits to plant growth is critical for scaling attributes of organisms to the dynamics of ecosystems and for understanding how selection shapes integrated botanical phenotypes. However, a general mechanistic theory showing how traits specifically influence carbon and biomass flux within and across plants is needed. Building on foundational work on relative growth rate, recent work on functional trait spectra, and metabolic scaling theory, here we derive a generalized trait-based model of plant growth. In agreement with a wide variety of empirical data, our model uniquely predicts how key functional traits interact to regulate variation in relative growth rate, the allometric growth normalizations for both angiosperms and gymnosperms, and the quantitative form of several functional trait spectra relationships. The model also provides a general quantitative framework to incorporate additional leaf-level trait scaling relationships and hence to unite functional trait spectra with theories of relative growth rate, and metabolic scaling. We apply the model to calculate carbon use efficiency. This often ignored trait, which may influence variation in relative growth rate, appears to vary directionally across geographic gradients. Together, our results show how both quantitative plant traits and the geometry of vascular transport networks can be merged into a common scaling theory. Our model provides a framework for predicting not only how traits covary within an integrated allometric phenotype but also how trait variation mechanistically influences plant growth and carbon flux within and across diverse ecosystems.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/nature06061</identifier><identifier>PMID: 17851525</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; biochemical pathways ; Biological and medical sciences ; Biomass ; Botanical ; Botany ; Carbon ; Carbon - metabolism ; carbon use efficiency ; Computing time ; Ecology ; Ecosystem ; Ecosystems ; equations ; Fluctuations ; Flux ; functional trait spectra ; Fundamental and applied biological sciences. Psychology ; Genotype & phenotype ; growth models ; Growth rate ; Humanities and Social Sciences ; Leaves ; letter ; Mathematical models ; mathematics and statistics ; Models, Biological ; multidisciplinary ; Plant Development ; Plant growth ; plant physiology ; plants ; Plants (organisms) ; Plants - metabolism ; Science ; Spectra ; Synecology ; Terrestrial ecosystems ; Theory</subject><ispartof>Nature, 2007-09, Vol.449 (7159), p.218-222</ispartof><rights>Springer Nature Limited 2007</rights><rights>2007 INIST-CNRS</rights><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 13, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-e201ba4009520c02aef4970405df2bc2552995e366b62e854ef0961f9325127c3</citedby><cites>FETCH-LOGICAL-c671t-e201ba4009520c02aef4970405df2bc2552995e366b62e854ef0961f9325127c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19061540$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17851525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Enquist, B.J</creatorcontrib><creatorcontrib>Kerkhoff, A.J</creatorcontrib><creatorcontrib>Stark, S.C</creatorcontrib><creatorcontrib>Swenson, N.G</creatorcontrib><creatorcontrib>McCarthy, M.C</creatorcontrib><creatorcontrib>Price, C.A</creatorcontrib><title>general integrative model for scaling plant growth, carbon flux, and functional trait spectra</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Linking functional traits to plant growth is critical for scaling attributes of organisms to the dynamics of ecosystems and for understanding how selection shapes integrated botanical phenotypes. However, a general mechanistic theory showing how traits specifically influence carbon and biomass flux within and across plants is needed. Building on foundational work on relative growth rate, recent work on functional trait spectra, and metabolic scaling theory, here we derive a generalized trait-based model of plant growth. In agreement with a wide variety of empirical data, our model uniquely predicts how key functional traits interact to regulate variation in relative growth rate, the allometric growth normalizations for both angiosperms and gymnosperms, and the quantitative form of several functional trait spectra relationships. The model also provides a general quantitative framework to incorporate additional leaf-level trait scaling relationships and hence to unite functional trait spectra with theories of relative growth rate, and metabolic scaling. We apply the model to calculate carbon use efficiency. This often ignored trait, which may influence variation in relative growth rate, appears to vary directionally across geographic gradients. Together, our results show how both quantitative plant traits and the geometry of vascular transport networks can be merged into a common scaling theory. Our model provides a framework for predicting not only how traits covary within an integrated allometric phenotype but also how trait variation mechanistically influences plant growth and carbon flux within and across diverse ecosystems.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>biochemical pathways</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Botanical</subject><subject>Botany</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>carbon use efficiency</subject><subject>Computing time</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>equations</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>functional trait spectra</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genotype & phenotype</subject><subject>growth models</subject><subject>Growth rate</subject><subject>Humanities and Social Sciences</subject><subject>Leaves</subject><subject>letter</subject><subject>Mathematical models</subject><subject>mathematics and statistics</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Plant Development</subject><subject>Plant growth</subject><subject>plant physiology</subject><subject>plants</subject><subject>Plants (organisms)</subject><subject>Plants - metabolism</subject><subject>Science</subject><subject>Spectra</subject><subject>Synecology</subject><subject>Terrestrial ecosystems</subject><subject>Theory</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0s1v0zAYBvAIgdgYnLhDhgQC0YzXju3Yx6riY9IEEtvECUWuawdPqd3ZDoz_Hlep6IoKKIdEzi-PkydvUTxGcIKg5m-cTEPQwIChO8UhIg2rCOPN3eIQAPMKeM0OigcxXgEARQ25XxyghlNEMT0svnba6SD70rqkuyCT_a7LpV_ovjQ-lFHJ3rquXPXSpbIL_kf6NimVDHPvStMPN5NSukVpBqeS9S7npCBtKuNKq3z1sLhnZB_1o835qLh89_Zi9qE6-_T-dDY9qxRrUKo0BjSXBEBQDAqw1IaIBgjQhcFzhSnFQlBdMzZnWHNKtAHBkBE1pgg3qj4qXoy5q-CvBx1Tu7RR6T6_tfZDbBnHjOXPz_DlPyFqaE2E4IL8nwLHSECNWabP_qBXfgi5jdhiILQhNV_nVSPqZK9b64zPBalN_d5pY_PyFOUfIxDhdBu649XKXre30ckelI-FXlq1N_XVzgPZJH2TOjnE2J6ef961r_9upxdfZh_3ahV8jEGbdhXsUoafual2PajtrUHN-smmsmG-1Iut3UxmBs83QK6H0ATplI1bJ3IKJes_OhldzLdcp8O2-_37Ho98XPydt2uejsZI38ou5G0vz_OI1gCc8Ibw-hefhQ87</recordid><startdate>20070913</startdate><enddate>20070913</enddate><creator>Enquist, B.J</creator><creator>Kerkhoff, A.J</creator><creator>Stark, S.C</creator><creator>Swenson, N.G</creator><creator>McCarthy, M.C</creator><creator>Price, C.A</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20070913</creationdate><title>general integrative model for scaling plant growth, carbon flux, and functional trait spectra</title><author>Enquist, B.J ; Kerkhoff, A.J ; Stark, S.C ; Swenson, N.G ; McCarthy, M.C ; Price, C.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-e201ba4009520c02aef4970405df2bc2552995e366b62e854ef0961f9325127c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>biochemical pathways</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Botanical</topic><topic>Botany</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>carbon use efficiency</topic><topic>Computing time</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>equations</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>functional trait spectra</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genotype & phenotype</topic><topic>growth models</topic><topic>Growth rate</topic><topic>Humanities and Social Sciences</topic><topic>Leaves</topic><topic>letter</topic><topic>Mathematical models</topic><topic>mathematics and statistics</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Plant Development</topic><topic>Plant growth</topic><topic>plant physiology</topic><topic>plants</topic><topic>Plants (organisms)</topic><topic>Plants - metabolism</topic><topic>Science</topic><topic>Spectra</topic><topic>Synecology</topic><topic>Terrestrial ecosystems</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Enquist, B.J</creatorcontrib><creatorcontrib>Kerkhoff, A.J</creatorcontrib><creatorcontrib>Stark, S.C</creatorcontrib><creatorcontrib>Swenson, N.G</creatorcontrib><creatorcontrib>McCarthy, M.C</creatorcontrib><creatorcontrib>Price, C.A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Enquist, B.J</au><au>Kerkhoff, A.J</au><au>Stark, S.C</au><au>Swenson, N.G</au><au>McCarthy, M.C</au><au>Price, C.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>general integrative model for scaling plant growth, carbon flux, and functional trait spectra</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2007-09-13</date><risdate>2007</risdate><volume>449</volume><issue>7159</issue><spage>218</spage><epage>222</epage><pages>218-222</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><eissn>1476-4679</eissn><coden>NATUAS</coden><abstract>Linking functional traits to plant growth is critical for scaling attributes of organisms to the dynamics of ecosystems and for understanding how selection shapes integrated botanical phenotypes. However, a general mechanistic theory showing how traits specifically influence carbon and biomass flux within and across plants is needed. Building on foundational work on relative growth rate, recent work on functional trait spectra, and metabolic scaling theory, here we derive a generalized trait-based model of plant growth. In agreement with a wide variety of empirical data, our model uniquely predicts how key functional traits interact to regulate variation in relative growth rate, the allometric growth normalizations for both angiosperms and gymnosperms, and the quantitative form of several functional trait spectra relationships. The model also provides a general quantitative framework to incorporate additional leaf-level trait scaling relationships and hence to unite functional trait spectra with theories of relative growth rate, and metabolic scaling. We apply the model to calculate carbon use efficiency. This often ignored trait, which may influence variation in relative growth rate, appears to vary directionally across geographic gradients. Together, our results show how both quantitative plant traits and the geometry of vascular transport networks can be merged into a common scaling theory. Our model provides a framework for predicting not only how traits covary within an integrated allometric phenotype but also how trait variation mechanistically influences plant growth and carbon flux within and across diverse ecosystems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>17851525</pmid><doi>10.1038/nature06061</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature, 2007-09, Vol.449 (7159), p.218-222 |
issn | 0028-0836 1476-4687 1476-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_68266000 |
source | Nature |
subjects | Animal and plant ecology Animal, plant and microbial ecology biochemical pathways Biological and medical sciences Biomass Botanical Botany Carbon Carbon - metabolism carbon use efficiency Computing time Ecology Ecosystem Ecosystems equations Fluctuations Flux functional trait spectra Fundamental and applied biological sciences. Psychology Genotype & phenotype growth models Growth rate Humanities and Social Sciences Leaves letter Mathematical models mathematics and statistics Models, Biological multidisciplinary Plant Development Plant growth plant physiology plants Plants (organisms) Plants - metabolism Science Spectra Synecology Terrestrial ecosystems Theory |
title | general integrative model for scaling plant growth, carbon flux, and functional trait spectra |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=general%20integrative%20model%20for%20scaling%20plant%20growth,%20carbon%20flux,%20and%20functional%20trait%20spectra&rft.jtitle=Nature&rft.au=Enquist,%20B.J&rft.date=2007-09-13&rft.volume=449&rft.issue=7159&rft.spage=218&rft.epage=222&rft.pages=218-222&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature06061&rft_dat=%3Cgale_proqu%3EA185191485%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c671t-e201ba4009520c02aef4970405df2bc2552995e366b62e854ef0961f9325127c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204574384&rft_id=info:pmid/17851525&rft_galeid=A185191485&rfr_iscdi=true |