Loading…
Mapping Brain c-Fos Immunoreactivity after Insulin-Induced Voluntary Lard Intake: Insulin- and Lard-Associated Patterns
In addition to the inhibitory role of central insulin on food intake, insulin also acts to promote lard intake. We investigated the neural pathways involved in this facet of insulin action. Insulin or saline was infused into either the superior mesenteric or right external jugular veins of streptozo...
Saved in:
Published in: | Journal of neuroendocrinology 2007-10, Vol.19 (10), p.794-808 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In addition to the inhibitory role of central insulin on food intake, insulin also acts to promote lard intake. We investigated the neural pathways involved in this facet of insulin action. Insulin or saline was infused into either the superior mesenteric or right external jugular veins of streptozotocin‐diabetic rodents with elevated steady‐state circulating corticosterone concentrations. After postsurgical recovery, rats were offered the choice of chow or lard to eat. Irrespective of the site of venous infusion, insulin increased lard and decreased chow intake. After 4 days, lard was removed for 8 h. On return for 1 h, only insulin infused into the superior mesenteric vein resulted in lard intake. This facilitated distinction between the effects of circulating insulin concentrations (similar in the two insulin‐infused groups) and lard ingestion on the patterns of c‐Fos+ cells in the brain, termed insulin‐ and lard‐associated patterns, respectively. Insulin‐associated changes in c‐Fos+ cell numbers were evident in the arcuate nucleus, bed nucleus of the stria terminalis and substantia nigra pars compacta, concomitant with elevated leptin levels and reduced chow intake. Lard‐associated changes in c‐Fos+ cell numbers were observed in the nucleus of the tractus solitarius, lateral parabrachial nucleus, central nucleus of the amygdala, ventral tegmental area, nucleus accumbens shell and the prefrontal cortex, and were associated with lower levels of triglycerides and free fatty acids. The anterior paraventricular thalamic nucleus exhibited both patterns. These data collectively fit into a framework for food intake and reward and provide targets for pharmacological manipulation to influence the choice of food intake. |
---|---|
ISSN: | 0953-8194 1365-2826 |
DOI: | 10.1111/j.1365-2826.2007.01593.x |