Loading…

Dietary factors and growth and metabolism in experimental tumors

Development of a diet that provides adequate nutrition and effective cancer prevention is an important goal in nutrition and cancer research. A confounding aspect of dietary control of tumor growth is the fact that some nutrients may up-regulate tumor growth, whereas other nutrients and nonnutrients...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of nutritional biochemistry 2007-10, Vol.18 (10), p.637-649
Main Authors: Sauer, Leonard A., Blask, David E., Dauchy, Robert T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Development of a diet that provides adequate nutrition and effective cancer prevention is an important goal in nutrition and cancer research. A confounding aspect of dietary control of tumor growth is the fact that some nutrients may up-regulate tumor growth, whereas other nutrients and nonnutrients down-regulate growth. Both up- and down-regulators may be present in the same foodstuff. Identification of these substances, determination of their mechanisms of action and potencies, as well as the interactions among the different mechanisms are topics of ongoing research. In this review, we describe results obtained in vivo or during perfusion in situ using solid tissue-isolated rodent tumors and human cancer xenografts in nude rats. Linoleic acid (LA), an essential n-6 polyunsaturated fatty acid (PUFA), was identified as an agent in dietary fat that is responsible for an up-regulation of tumor growth in vivo. Tumor LA uptake, mediated by high intratumor cAMP, stimulated formation of the mitogen, 13-hydroxyoctadecadienoic acid (13-HODE) and also increased ERK1/2 phosphorylation, [ 3H]thymidine incorporation and growth. A mechanism for control of this growth-promoting pathway was revealed during studies of the effects of dietary nutrients and nonnutrients known to inhibit tumor growth. These included four groups of lipophilic agents: n-3 fatty acids, melatonin, conjugated LA isomers and trans fatty acids. Each of these agents activated an inhibitory G protein-coupled receptor-mediated pathway that specifically suppressed tumor uptake of saturated, monounsaturated and n-6 PUFAs, thereby inhibiting an early step in the LA-dependent growth-promoting pathway.
ISSN:0955-2863
1873-4847
DOI:10.1016/j.jnutbio.2006.12.009