Loading…
Influence of rigid inclusions on the bending elasticity of a lipid membrane
We model the influence of rigid inclusions on the curvature elasticity of a lipid membrane. Our focus is on conelike transmembrane inclusions that are able to induce long-range deformations in the host bilayer membrane. The elastic properties of the membrane are described in terms of curvature and t...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-11, Vol.74 (5 Pt 1), p.051503-051503, Article 051503 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We model the influence of rigid inclusions on the curvature elasticity of a lipid membrane. Our focus is on conelike transmembrane inclusions that are able to induce long-range deformations in the host bilayer membrane. The elastic properties of the membrane are described in terms of curvature and tilt elasticity. The latter adds an additional degree of freedom that allows the membrane to accommodate an inclusion not only through a curvature deformation but also via changes in lipid tilt. Using a (mean-field level) cell model for homogeneously distributed inclusions in a small membrane segment of prescribed (mesoscopic-scale) spherical shape, we calculate the optimal microscopic-scale deviation of the membrane shape around the intercalated inclusions and the corresponding free energy, analytically. We show that the lipid tilt degree of freedom can lead to local softening of the inclusion-containing lipid bilayer segment. The predicted softening requires a sufficiently small value of the tilt modulus; its origin lies in the reduction of the excess membrane-inclusion interaction energy. We compare our results to the case of suppressed microscopic shape relaxation. Here, too, local softening of the membrane is possible. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.74.051503 |