Loading…

Influence of rigid inclusions on the bending elasticity of a lipid membrane

We model the influence of rigid inclusions on the curvature elasticity of a lipid membrane. Our focus is on conelike transmembrane inclusions that are able to induce long-range deformations in the host bilayer membrane. The elastic properties of the membrane are described in terms of curvature and t...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-11, Vol.74 (5 Pt 1), p.051503-051503, Article 051503
Main Authors: Fosnaric, Miha, Iglic, Ales, May, Sylvio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We model the influence of rigid inclusions on the curvature elasticity of a lipid membrane. Our focus is on conelike transmembrane inclusions that are able to induce long-range deformations in the host bilayer membrane. The elastic properties of the membrane are described in terms of curvature and tilt elasticity. The latter adds an additional degree of freedom that allows the membrane to accommodate an inclusion not only through a curvature deformation but also via changes in lipid tilt. Using a (mean-field level) cell model for homogeneously distributed inclusions in a small membrane segment of prescribed (mesoscopic-scale) spherical shape, we calculate the optimal microscopic-scale deviation of the membrane shape around the intercalated inclusions and the corresponding free energy, analytically. We show that the lipid tilt degree of freedom can lead to local softening of the inclusion-containing lipid bilayer segment. The predicted softening requires a sufficiently small value of the tilt modulus; its origin lies in the reduction of the excess membrane-inclusion interaction energy. We compare our results to the case of suppressed microscopic shape relaxation. Here, too, local softening of the membrane is possible.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.74.051503