Loading…

Prostacyclin in endotoxemia-induced acute kidney injury: cyclooxygenase inhibition and renal prostacyclin synthase transgenic mice

Sepsis-related acute kidney injury (AKI) is the leading cause of AKI in intensive care units. Endotoxin is a primary initiator of inflammatory and hemodynamic consequences of sepsis and is associated with experimental AKI. The present study was undertaken to further examine the role of the endotheli...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Renal physiology 2007-10, Vol.293 (4), p.F1131-F1136
Main Authors: Wang, Wei, Zolty, Einath, Falk, Sandor, Summer, Sandra, Stearman, Robert, Geraci, Mark, Schrier, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sepsis-related acute kidney injury (AKI) is the leading cause of AKI in intensive care units. Endotoxin is a primary initiator of inflammatory and hemodynamic consequences of sepsis and is associated with experimental AKI. The present study was undertaken to further examine the role of the endothelium, specifically prostacyclin (PGI(2)), in the pathogenesis of endotoxemia-related AKI. A low dose of endotoxin (LPS, 1 mg/kg) in wild-type (WT) mice was associated with stable glomerular filtration rate (GFR) (164.0 +/- 16.7 vs. 173.3 +/- 6.7 microl/min, P = not significant) as urinary excretion of 6-keto-PGF(1alpha), the major metabolite of PGI(2), increased. When cyclooxygenase inhibition with indomethacin abolished this rise in 6-keto-PGF(1alpha), the same low dose of LPS significantly decreased GFR (110.7 +/- 12.1 vs. 173.3 +/- 6.7 microl/min, P < 0.05). The same dose of indomethacin did not alter GFR in WT mice. To further study the role of PGI(2) in endotoxemia, renal-specific PGI synthase (PGIs) transgenic (Tg) mice were developed that had increased PGIs expression only in the kidney and increased urinary 6-keto-PGF(1alpha). These Tg mice, however, demonstrated endotoxemia-related AKI with low-dose LPS (1 mg/kg) (GFR: 12.6 +/- 3.9 vs. 196.5 +/- 21.0 microl/min P < 0.01), which did not alter GFR in WT mice (164.0 +/- 16.7 vs. 173.3 +/- 6.7 microl/min, P = not significant). An elevation in renal cAMP, however, suggested an activation of the PGI(2)-cAMP-renin system in these Tg mice. Moreover, angiotensin-converting enzyme inhibition afforded protection against endotoxin-related AKI in these Tg mice. Thus endothelial PGIs-mediated PGI(2), as previously shown with endothelial nitric oxide synthase-mediated nitric oxide, contributes to renal protection against endotoxemia-related AKI. This effect may be overridden by excessive activation of the renin-angiotensin system in renal-specific PGIs Tg mice.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00212.2007