Loading…
Quantitative DNA hybridization in solution using magnetic/luminescent core–shell nanoparticles
Nanoscale magnetic/luminescent core–shell particles were used for DNA quantification in a hybridization-in-solution approach. We demonstrated a rapid, simple, and non-polymerase chain reaction-based DNA hybridization-in-solution assay for quantifying bacteria capable of biodegrading methyl tertiary-...
Saved in:
Published in: | Analytical biochemistry 2007-11, Vol.370 (2), p.186-194 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanoscale magnetic/luminescent core–shell particles were used for DNA quantification in a hybridization-in-solution approach. We demonstrated a rapid, simple, and non-polymerase chain reaction-based DNA hybridization-in-solution assay for quantifying bacteria capable of biodegrading methyl tertiary-butyl ether. Fe
3O
4/Eu:Gd
2O
3 core–shell nanoparticles synthesized by spray pyrolysis were biofunctionalized with NeutrAvidin. Following immobilization of a biotinylated probe DNA on the particles’ surfaces via passive adsorption, target DNA labeled with fluorescein isothiocyanate was hybridized with probe DNA. The hybridized DNA complex was separated from solution with a magnet, while nonhybridized DNA remained in solution. The normalized fluorescence (fluorescein isothiocyanate/nanoparticles) measured with a spectrofluorometer indicated a linear quantification (
R
2
=
0.98) of the target bacterial 16 S rDNA. The rate of hybridization increased concurrently with the target DNA concentration. In addition, this approach differentiated between the signal outputs from perfectly complementary target and two-base mismatched target DNA in a range of concentrations, showing the specificity of the assay and the possibility for environmental applications. |
---|---|
ISSN: | 0003-2697 1096-0309 |
DOI: | 10.1016/j.ab.2007.08.001 |