Loading…
Interaction phenomena between oral implants and bone tissue in single and multiple implant frames under occlusal loads and misfit conditions: A numerical approach
An investigation is carried out on the effects induced in bone tissue surrounding oral implants placed in the premolar region of a mandible by using a numerical approach. In particular, a single implant and a multiple implant frame under loading are considered. The effects of accuracy in the couplin...
Saved in:
Published in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2007-11, Vol.83B (2), p.332-339 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An investigation is carried out on the effects induced in bone tissue surrounding oral implants placed in the premolar region of a mandible by using a numerical approach. In particular, a single implant and a multiple implant frame under loading are considered. The effects of accuracy in the coupling of the connecting bar and implants are evaluated. The mechanical response of the bone–oral implant system, depending on the different mechanical properties assumed for the peri‐implant bone tissue during the evolutionary trend of osseointegration, is studied. A further task regard to the comparison of the mechanical state induced in the bone depending on the loading conditions considered. Effects of physiological occlusal loads are compared with ones given by framework defects arising from the specific manufacturing process, such as misfit between the implants and the connecting bar. The investigation offers the basis for an integrated clinical and biomechanical evaluation of the effects induced on peri‐implant bone, depending on bone properties, implant system configuration, and the actions induced. Analyses performed show that stress states induced by the investigated type of misfit are comparable to those arising from the application of physiological loading conditions. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2007 |
---|---|
ISSN: | 1552-4973 1552-4981 |
DOI: | 10.1002/jbm.b.30800 |