Loading…
In vivo biostability of polyether polyurethanes with fluoropolymer and polyethylene oxide surface modifying endgroups; resistance to metal ion oxidation
Polyether polyurethanes are subject to oxidation catalyzed by, and through direct (redox) reaction with transition metal ions (metal ion oxidation, MIO). The source of the ions is corrosion of metallic parts within an implanted device. A Shore 80A polyether polyurethane was modified with fluoropolym...
Saved in:
Published in: | Journal of biomedical materials research. Part A 2007-01, Vol.80A (1), p.34-44 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polyether polyurethanes are subject to oxidation catalyzed by, and through direct (redox) reaction with transition metal ions (metal ion oxidation, MIO). The source of the ions is corrosion of metallic parts within an implanted device. A Shore 80A polyether polyurethane was modified with fluoropolymer (E80AF) or polyethylene oxide (E80AP) surface modifying end groups (SME). The SME migrates to the surface to form a covalently bonded monolayer, while maintaining the bulk properties of the polyurethane. In vitro tests in H2O2 solution indicated that both SME's accelerated MIO. Tubing samples containing cobalt mandrels were implanted in the subcutis of rabbits for up to 2 years. In vivo, E80AF significantly slowed the rate of visible degradation, but did not prevent MIO. E80AP had virtually identical visual performance to the unmodified control in vivo. Infrared spectroscopy and molecular weight correlated well with visual appearance. When cracks were seen, polyether soft segment oxidation was occurring. Both E80AP and the control developed severe loss of molecular weight in vivo. The changes were much less severe for E80AF. Thus, contrary to in vitro test results, the PEO SME had no effect at all on MIO resistance, while the fluoropolymer SME produced a significant improvement in biostability. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2007 |
---|---|
ISSN: | 1549-3296 1552-4965 |
DOI: | 10.1002/jbm.a.30860 |