Loading…

Dominant-negative E-cadherin inhibits the invasiveness of inflammatory breast cancer cells in vitro

E-cadherin is a transmembrane glycoprotein which mediates epithelial cell-to-cell adhesion function as a tumor suppressor and frequently loss of expression in a wide spectrum of human cancer. However, recent studies demonstrated that E-cadherin was always over-expressed in inflammatory breast cancer...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cancer research and clinical oncology 2007-02, Vol.133 (2), p.83-92
Main Authors: DONG, Hui-Ming, GANG LIU, HOU, Yi-Feng, JIONG WU, LU, Jin-Song, LUO, Jian-Min, SHEN, Zhen-Zhou, SHAO, Zhi-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:E-cadherin is a transmembrane glycoprotein which mediates epithelial cell-to-cell adhesion function as a tumor suppressor and frequently loss of expression in a wide spectrum of human cancer. However, recent studies demonstrated that E-cadherin was always over-expressed in inflammatory breast cancer (IBC) specimen and cell lines, which is a clinical extreme malignancy of breast cancer. It is hypothesized that the gain and not the loss of the E-cadherin axis contributes to the IBC unique phenotype. To test this assumption, we generated dominant negative mutant E-cadherin high-expression inflammatory breast cancer cells by introduced dominant negative mutant E-cadherin (H-2kd-E-cad) cDNA into human IBC SUM149 cells. Our studies demonstrated that the ability of invasion of SUM149 cells was significantly inhibited by H-2kd-E-cad via down-regulation of MMP-1 and MMP-9 expression. The underlying signal pathway of MAPK phosphorylated Erk 1/2(P44/42) in H-2kd-E-cad-transfected SUM149 cells was significantly down-regulated compared to parental and mock contrast. Our studies provided further functional evidence as the gain of E-cadherin expression dedicated to the IBC malignant phenotype and the blockage of MAPK/Erk activation maybe a promising therapeutic target.
ISSN:0171-5216
1432-1335
DOI:10.1007/s00432-006-0140-6