Loading…

Ablation of the mammalian methionine sulfoxide reductase A affects the expression level of cysteine deoxygenase

Methionine sulfoxide reductases (Msrs) are able to reduce methionine sulfoxide to methionine both in proteins and free amino acids. By their action it is possible to regulate the function of specific proteins and the cellular antioxidant defense against oxidative damage. Similarly, cysteine deoxygen...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2007-01, Vol.352 (2), p.556-559
Main Authors: Oien, Derek B., Moskovitz, Jackob
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Methionine sulfoxide reductases (Msrs) are able to reduce methionine sulfoxide to methionine both in proteins and free amino acids. By their action it is possible to regulate the function of specific proteins and the cellular antioxidant defense against oxidative damage. Similarly, cysteine deoxygenase (CDO) may be involved in the regulation of protein function and antioxidant defense mechanisms by its ability to oxidized cysteine residues. The two enzymes’ involvement in sulfur amino-acids metabolism seems to be connected. Lack of methionine sulfoxide reductase A (MsrA) in liver of MsrA−/− led to a significant drop in the cellular level of thiol groups and lowered the CDO level of expression. Moreover, following selenium deficient diet (applied to decrease the expression levels of selenoproteins like MsrB), the latter effect was maintained while the basal levels of thiol decreased in both mouse strains. We suggest that both enzymes are working in coordination to balance cellular antioxidant defense.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2006.11.063