Loading…

Apoptosis-associated changes in the glycerophospholipid composition of hematopoietic progenitor cells monitored by 31P NMR spectroscopy and MALDI-TOF mass spectrometry

Apoptosis, or programmed cell death, plays an important role in development and in tissue homeostasis and is assumed to be accompanied by changes in the composition of cellular glycerophospholipids (GPL). We have applied a combination of 31P nuclear magnetic resonance spectroscopy and matrix-assiste...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry and physics of lipids 2007-12, Vol.150 (2), p.229-238
Main Authors: Fuchs, Beate, Schiller, Jürgen, Cross, Michael A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Apoptosis, or programmed cell death, plays an important role in development and in tissue homeostasis and is assumed to be accompanied by changes in the composition of cellular glycerophospholipids (GPL). We have applied a combination of 31P nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to the analysis of organic extracts of hematopoietic progenitor cells undergoing the physiologically relevant process of apoptosis following growth factor withdrawal. The combined application of these methods enables the quantitative analysis of all glycerophospholipid classes and reveals changes in the acyl chain compositions from crude cell extracts. Using these techniques, an increase in the ratio of ether-linked glycerophospholipids to diacyl-glycerophospholipids during apoptosis was observed. The relative decrease in the membrane diacyl-phosphatidylcholine (PC) levels was found to correlate with increased concentrations of the corresponding lysophosphatidylcholine (LPC) present in the medium.
ISSN:0009-3084
1873-2941
DOI:10.1016/j.chemphyslip.2007.08.005