Loading…
Capillary electrophoresis-mass spectrometry of proteins at medium pH using bilayer-coated capillaries
The feasibility of using noncovalently bilayer-coated capillaries for capillary electrophoresis-mass spectrometry (CE-MS) of acidic proteins was investigated using background electrolytes (BGEs) of medium pH. The capillary was coated by successively rinsing the capillary with solutions of the opposi...
Saved in:
Published in: | Analyst (London) 2007-01, Vol.132 (1), p.75-81 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The feasibility of using noncovalently bilayer-coated capillaries for capillary electrophoresis-mass spectrometry (CE-MS) of acidic proteins was investigated using background electrolytes (BGEs) of medium pH. The capillary was coated by successively rinsing the capillary with solutions of the oppositely charged polymers polybrene (PB) and poly(vinyl sulfonic acid) (PVS). Volatile BGEs containing ammonium formate and/or N-methyl morpholine were tested at pH 7.5 and 8.5. Overall, these BGEs provided relatively fast protein separations (analysis times of ca. 12 min) and showed high efficiencies (70,000-300,000 plates) when the ionic strength was sufficiently high. Migration-time reproducibilities were very favorable with RSDs of less than 1.0%. Infusion experiments showed satisfactory MS responses for studied proteins dissolved in ammonium formate (pH 8.5), however, high concentrations of N-methyl morpholine appeared to seriously suppress the MS protein signals. Evaluation of the CE-MS system was performed by analyzing a mixture of intact proteins yielding efficient separations and good-quality mass spectra. CE-MS analysis of a reconstituted formulation of the biopharmaceutical recombinant human growth hormone (rhGH) which was stored for a prolonged time, revealed one degradation product which was provisionally identified as desamido rhGH. Based on the MS responses the amount of degradation was estimated to be ca. 25%. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/b607178c |