Loading…

Differential immunogold localisation of sulphated and unsulphated keratan sulphate proteoglycans in normal and macular dystrophy cornea using sulphation motif-specific antibodies

Keratan sulphate (KS) proteoglycans (PGs) are key molecules in the corneal stroma for tissue organisation and transparency. Macular corneal dystrophy (MCD) is a rare, autosomal recessive disease characterised by disturbances in KS expression. MCD is caused by mutations in CHST6, a gene encoding the...

Full description

Saved in:
Bibliographic Details
Published in:Histochemistry and cell biology 2007-01, Vol.127 (1), p.115-120
Main Authors: Young, Robert D, Akama, Tomoya O, Liskova, Petra, Ebenezer, Neil D, Allan, Bruce, Kerr, Briedgeen, Caterson, Bruce, Fukuda, Michiko N, Quantock, Andrew J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Keratan sulphate (KS) proteoglycans (PGs) are key molecules in the corneal stroma for tissue organisation and transparency. Macular corneal dystrophy (MCD) is a rare, autosomal recessive disease characterised by disturbances in KS expression. MCD is caused by mutations in CHST6, a gene encoding the enzyme responsible for KS sulphation. Sulphated KS is absent in type I disease causing corneal opacity and loss of vision. Genetic studies have highlighted the mutational heterogeneity in MCD, but supportive immunohistochemical studies on corneal KS have previously been limited by the availability of antibodies mostly reactive only with highly sulphated KS epitopes. In this study, we employed four antibodies against specific KS sulphation patterns, including one against unsulphated KS, to investigate their reactivity in a case of MCD compared with normal cornea using high-resolution immunogold electron microscopy. Mutation analysis indicated type I MCD with deletion of the entire open reading frame of CHST6. Contrast enhanced fixation revealed larger PG structures in MCD than normal. Unlike normal cornea, MCD cornea showed positive labelling with antibody to unsulphated KSPG, but was negative with antibodies to sulphated KSPG. These antibodies will thus facilitate high-resolution investigations of phenotypic heterogeneity in support of genetic studies in this disease.
ISSN:0948-6143
1432-119X
DOI:10.1007/s00418-006-0228-8