Loading…
Identification of atherosclerosis-associated conformational heat shock protein 60 epitopes by phage display and structural alignment
Abstract Autoimmune reactions to HSP60 are believed to play a key role during development of early atherosclerosis. Due to the high degree of phylogenetic conservation between microbial and human HSP60, bacterial infections might be responsible for inducing cross-reactivity to self HSP60, which is e...
Saved in:
Published in: | Atherosclerosis 2007-09, Vol.194 (1), p.79-87 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Autoimmune reactions to HSP60 are believed to play a key role during development of early atherosclerosis. Due to the high degree of phylogenetic conservation between microbial and human HSP60, bacterial infections might be responsible for inducing cross-reactivity to self HSP60, which is expressed on the surface of arterial endothelial cells stressed by classical atherosclerosis risk factors. Conformational epitopes recognized by polyclonal anti-mycobacterial HSP60 antibodies from subjects with atherosclerosis were identified using a phage displayed random library of cyclic constrained 7mer peptides. After five rounds of selection, DNA sequencing of strongly binding clones revealed that one peptide motif (CIGSPSTNC) was present in 64% of all clones, and a second motif (CSFHYQNRC) in 14%. Using a newly developed method for structural alignment of small constrained peptides onto a protein surface, we located the motif present in 14% of all clones on the surface of mycobacterial HSP60. The motif present in 64% of all clones was found on the surface of mycobacterial HSP60 as well as in the homologous region of human HSP60, which makes this epitope a promising candidate for further investigations on cross-reactive epitopes involved in early atherogenesis. |
---|---|
ISSN: | 0021-9150 1879-1484 |
DOI: | 10.1016/j.atherosclerosis.2006.09.028 |