Loading…
Enhancing Glutamate Transport: Mechanism of Action of Parawixin1, a Neuroprotective Compound from Parawixia bistriata Spider Venom
Previous studies have shown that a compound purified from the spider Parawixia bistriata venom stimulates the activity of glial glutamate transporters and can protect retinal tissue from ischemic damage. To understand the mechanism by which this compound enhances transport, we examined its effects o...
Saved in:
Published in: | Molecular pharmacology 2007-11, Vol.72 (5), p.1228-1237 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Previous studies have shown that a compound purified from the spider Parawixia bistriata venom stimulates the activity of glial glutamate transporters and can protect retinal tissue from ischemic damage. To understand
the mechanism by which this compound enhances transport, we examined its effects on the functional properties of glutamate
transporters after solubilization and reconstitution in liposomes and in transfected COS-7 cells. Here, we demonstrate in
both systems that Parawixin1 promotes a direct and selective enhancement of glutamate influx by the EAAT2 transporter subtype
through a mechanism that does not alter the apparent affinities for the cosubstrates glutamate or sodium. In liposomes, we
observed maximal enhancement by Parawixin1 when extracellular sodium and intracellular potassium concentrations are within
physiological ranges. Moreover, the compound does not enhance the reverse transport of glutamate under ionic conditions that
favor efflux, when extracellular potassium is elevated and the sodium gradient is reduced, nor does it alter the exchange
of glutamate in the absence of internal potassium. These observations suggest that Parawixin1 facilitates the reorientation
of the potassium-bound transporter, the rate-limiting step in the transport cycle, a conclusion further supported by experiments
showing that Parawixin1 does not stimulate uptake by an EAAT2 transport mutant (E405D) defective in the potassium-dependent
reorientation step. Thus, Parawixin1 enhances transport through a novel mechanism targeting a step in the transport cycle
distinct from substrate influx or efflux and provides a basis for the design of new drugs that act allosterically on transporters
to increase glutamate clearance. |
---|---|
ISSN: | 0026-895X 1521-0111 |
DOI: | 10.1124/mol.107.037127 |