Loading…

Classification of EMG signals using PCA and FFT

In this study, the fast Fourier transform (FFT) analysis was applied to EMG signals recorded from ulnar nerves of 59 patients to interpret data. The data of the patients were diagnosed by the neurologists as 19 patients were normal, 20 patients had neuropathy and 20 patients had myopathy. The amount...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical systems 2005-06, Vol.29 (3), p.241-250
Main Authors: Guler, Nihal Fatma, Kocer, Sabri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the fast Fourier transform (FFT) analysis was applied to EMG signals recorded from ulnar nerves of 59 patients to interpret data. The data of the patients were diagnosed by the neurologists as 19 patients were normal, 20 patients had neuropathy and 20 patients had myopathy. The amount of FFT coefficients had been reduced by using principal components analysis (PCA). This would facilitate calculation and storage of EMG data. PCA coefficients were applied to multilayer perceptron (MLP) and support vector machine (SVM) and both classified systems of performance values were computed. Consequently, the results show that SVM has high anticipation level in the diagnosis of neuromuscular disorders. It is proved that its test performance is high compared with MLP.
ISSN:0148-5598
1573-689X
DOI:10.1007/s10916-005-5184-7