Loading…
EPR and optical studies of erbium-doped β-PbF2 single-crystals and nanocrystals in transparent glass-ceramics
beta-PbF(2) single-crystals and nanocrystals in transparent glass-ceramics doped with ErF(3) have been synthesized and studied with two complementary techniques: electron paramagnetic resonance (EPR) and optical spectroscopy (absorption, selective excitation, fluorescence). A comparative study shows...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2007-01, Vol.9 (41), p.5591-5598 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | beta-PbF(2) single-crystals and nanocrystals in transparent glass-ceramics doped with ErF(3) have been synthesized and studied with two complementary techniques: electron paramagnetic resonance (EPR) and optical spectroscopy (absorption, selective excitation, fluorescence). A comparative study shows that, in both single-crystals and glass-ceramics, Er(3+) ions occupy the same types of sites, leading to similar optical properties. An EPR investigation demonstrates that, in these materials, part of the Er(3+) ions occupy cubic symmetry sites. For these ions, we determine the crystal field splitting of the ground state (4)I(15/2) and the symmetry of its sublevels. We also provide evidence for the presence of another type of Er(3+) ions, not detectable by EPR but evidenced by optical spectroscopy. We clearly show that this Er(3+), which gives rise to up-conversion luminescence, corresponds to clusters associating Er(3+) and F(-) ions. In the single-crystals, the proportion of these two types of erbium ions is estimated. It strongly depends on the doping rate of the beta-PbF(2) crystals. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/b706735f |