Loading…

Chemotherapeutic implants via subcritical CO2 modification

Abstract Polymer-based biomaterials have a broad range of current applications in medicine. Many implants generate a favorable biomedical outcome solely by providing short-term mechanical stability that allows healing of the surrounding tissues. An example is polymeric reconstructive resorbable plat...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2007-12, Vol.28 (36), p.5562-5569
Main Authors: Powell, Heather M, Ayodeji, Olukemi, Summerfield, Taryn L, Powell, David M, Kniss, Douglas A, Tomasko, David L, Lannutti, John J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-6264339aa3e8b11426e8cc7ce879edce6b3cbad16e1fae5565aa18398c2150073
cites cdi_FETCH-LOGICAL-c403t-6264339aa3e8b11426e8cc7ce879edce6b3cbad16e1fae5565aa18398c2150073
container_end_page 5569
container_issue 36
container_start_page 5562
container_title Biomaterials
container_volume 28
creator Powell, Heather M
Ayodeji, Olukemi
Summerfield, Taryn L
Powell, David M
Kniss, Douglas A
Tomasko, David L
Lannutti, John J
description Abstract Polymer-based biomaterials have a broad range of current applications in medicine. Many implants generate a favorable biomedical outcome solely by providing short-term mechanical stability that allows healing of the surrounding tissues. An example is polymeric reconstructive resorbable plates having initial strengths sufficient to stabilize bone segments while allowing the osteosynthesis needed to restore original function following tumor resection. Simultaneous, localized delivery of the widely employed chemotherapeutic paclitaxel following tumor removal presents a particularly desirable goal in this context. By using compressed/subcritical CO2 at moderate pressures (as opposed to the more familiar supercritical pressures) to embed paclitaxel in clinically utilized reconstructive plating, the form of the implant can be preserved while adding an inherently localized chemotherapeutic function. In vitro tests demonstrate the efficacy of the embedded paclitaxel against adherent MCF-7 breast cancer cells within the immediate area of the polylactic acid (PLA). CO2 can be utilized to add dual structural-chemotherapeutic function to polymeric surfaces without a change in form. The ability to ‘piggyback’ chemotherapeutic function into nearly any polymeric surface should find widespread utility.
doi_str_mv 10.1016/j.biomaterials.2007.09.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68435563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961207007107</els_id><sourcerecordid>30936674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-6264339aa3e8b11426e8cc7ce879edce6b3cbad16e1fae5565aa18398c2150073</originalsourceid><addsrcrecordid>eNqFkT9PwzAQxT2AaCl8BRQxsCWc48RxOiChiH9SpQ7AbDnORXVJmmAnlfrtcdRKsDFZZ7137-53hNxSiChQfr-NStO1akBrVOOiGCCLII8AkjMyB5rEYc5pPCOXzm3B15DEF2RGMyFECvmcLIsNtt2wQat6HAejA9P2jdoNLtgbFbix1Nb4b9UExToO2q4yta8G0-2uyHntM_H69C7I5_PTR_EartYvb8XjKtQJsCHkMU8Yy5ViKErqJ-IotM40iizHSiMvmS5VRTnSWmGa8lQpKlgudExTvw5bkLtj39523yO6QbbGaWz8lNiNTnKRMG9j_woZ5IzzLPHC5VGobeecxVr21rTKHiQFOWGVW_kXq5ywSsilx-rNN6eUsWyx-rWemHrBw1GAHsreoJW6MbsJ4Rce0G270e6mplS6WIJ8n640HQkyn0L9wj8dQ48O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30936674</pqid></control><display><type>article</type><title>Chemotherapeutic implants via subcritical CO2 modification</title><source>ScienceDirect Journals</source><creator>Powell, Heather M ; Ayodeji, Olukemi ; Summerfield, Taryn L ; Powell, David M ; Kniss, Douglas A ; Tomasko, David L ; Lannutti, John J</creator><creatorcontrib>Powell, Heather M ; Ayodeji, Olukemi ; Summerfield, Taryn L ; Powell, David M ; Kniss, Douglas A ; Tomasko, David L ; Lannutti, John J</creatorcontrib><description>Abstract Polymer-based biomaterials have a broad range of current applications in medicine. Many implants generate a favorable biomedical outcome solely by providing short-term mechanical stability that allows healing of the surrounding tissues. An example is polymeric reconstructive resorbable plates having initial strengths sufficient to stabilize bone segments while allowing the osteosynthesis needed to restore original function following tumor resection. Simultaneous, localized delivery of the widely employed chemotherapeutic paclitaxel following tumor removal presents a particularly desirable goal in this context. By using compressed/subcritical CO2 at moderate pressures (as opposed to the more familiar supercritical pressures) to embed paclitaxel in clinically utilized reconstructive plating, the form of the implant can be preserved while adding an inherently localized chemotherapeutic function. In vitro tests demonstrate the efficacy of the embedded paclitaxel against adherent MCF-7 breast cancer cells within the immediate area of the polylactic acid (PLA). CO2 can be utilized to add dual structural-chemotherapeutic function to polymeric surfaces without a change in form. The ability to ‘piggyback’ chemotherapeutic function into nearly any polymeric surface should find widespread utility.</description><identifier>ISSN: 0142-9612</identifier><identifier>DOI: 10.1016/j.biomaterials.2007.09.004</identifier><identifier>PMID: 17888509</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Advanced Basic Science ; Apoptosis ; Carbon Dioxide - chemistry ; Cell Line, Tumor ; Dentistry ; Humans ; Microscopy, Electron, Scanning ; Prostheses and Implants</subject><ispartof>Biomaterials, 2007-12, Vol.28 (36), p.5562-5569</ispartof><rights>Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-6264339aa3e8b11426e8cc7ce879edce6b3cbad16e1fae5565aa18398c2150073</citedby><cites>FETCH-LOGICAL-c403t-6264339aa3e8b11426e8cc7ce879edce6b3cbad16e1fae5565aa18398c2150073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17888509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Powell, Heather M</creatorcontrib><creatorcontrib>Ayodeji, Olukemi</creatorcontrib><creatorcontrib>Summerfield, Taryn L</creatorcontrib><creatorcontrib>Powell, David M</creatorcontrib><creatorcontrib>Kniss, Douglas A</creatorcontrib><creatorcontrib>Tomasko, David L</creatorcontrib><creatorcontrib>Lannutti, John J</creatorcontrib><title>Chemotherapeutic implants via subcritical CO2 modification</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Polymer-based biomaterials have a broad range of current applications in medicine. Many implants generate a favorable biomedical outcome solely by providing short-term mechanical stability that allows healing of the surrounding tissues. An example is polymeric reconstructive resorbable plates having initial strengths sufficient to stabilize bone segments while allowing the osteosynthesis needed to restore original function following tumor resection. Simultaneous, localized delivery of the widely employed chemotherapeutic paclitaxel following tumor removal presents a particularly desirable goal in this context. By using compressed/subcritical CO2 at moderate pressures (as opposed to the more familiar supercritical pressures) to embed paclitaxel in clinically utilized reconstructive plating, the form of the implant can be preserved while adding an inherently localized chemotherapeutic function. In vitro tests demonstrate the efficacy of the embedded paclitaxel against adherent MCF-7 breast cancer cells within the immediate area of the polylactic acid (PLA). CO2 can be utilized to add dual structural-chemotherapeutic function to polymeric surfaces without a change in form. The ability to ‘piggyback’ chemotherapeutic function into nearly any polymeric surface should find widespread utility.</description><subject>Advanced Basic Science</subject><subject>Apoptosis</subject><subject>Carbon Dioxide - chemistry</subject><subject>Cell Line, Tumor</subject><subject>Dentistry</subject><subject>Humans</subject><subject>Microscopy, Electron, Scanning</subject><subject>Prostheses and Implants</subject><issn>0142-9612</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkT9PwzAQxT2AaCl8BRQxsCWc48RxOiChiH9SpQ7AbDnORXVJmmAnlfrtcdRKsDFZZ7137-53hNxSiChQfr-NStO1akBrVOOiGCCLII8AkjMyB5rEYc5pPCOXzm3B15DEF2RGMyFECvmcLIsNtt2wQat6HAejA9P2jdoNLtgbFbix1Nb4b9UExToO2q4yta8G0-2uyHntM_H69C7I5_PTR_EartYvb8XjKtQJsCHkMU8Yy5ViKErqJ-IotM40iizHSiMvmS5VRTnSWmGa8lQpKlgudExTvw5bkLtj39523yO6QbbGaWz8lNiNTnKRMG9j_woZ5IzzLPHC5VGobeecxVr21rTKHiQFOWGVW_kXq5ywSsilx-rNN6eUsWyx-rWemHrBw1GAHsreoJW6MbsJ4Rce0G270e6mplS6WIJ8n640HQkyn0L9wj8dQ48O</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Powell, Heather M</creator><creator>Ayodeji, Olukemi</creator><creator>Summerfield, Taryn L</creator><creator>Powell, David M</creator><creator>Kniss, Douglas A</creator><creator>Tomasko, David L</creator><creator>Lannutti, John J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20071201</creationdate><title>Chemotherapeutic implants via subcritical CO2 modification</title><author>Powell, Heather M ; Ayodeji, Olukemi ; Summerfield, Taryn L ; Powell, David M ; Kniss, Douglas A ; Tomasko, David L ; Lannutti, John J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-6264339aa3e8b11426e8cc7ce879edce6b3cbad16e1fae5565aa18398c2150073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Advanced Basic Science</topic><topic>Apoptosis</topic><topic>Carbon Dioxide - chemistry</topic><topic>Cell Line, Tumor</topic><topic>Dentistry</topic><topic>Humans</topic><topic>Microscopy, Electron, Scanning</topic><topic>Prostheses and Implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Powell, Heather M</creatorcontrib><creatorcontrib>Ayodeji, Olukemi</creatorcontrib><creatorcontrib>Summerfield, Taryn L</creatorcontrib><creatorcontrib>Powell, David M</creatorcontrib><creatorcontrib>Kniss, Douglas A</creatorcontrib><creatorcontrib>Tomasko, David L</creatorcontrib><creatorcontrib>Lannutti, John J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Powell, Heather M</au><au>Ayodeji, Olukemi</au><au>Summerfield, Taryn L</au><au>Powell, David M</au><au>Kniss, Douglas A</au><au>Tomasko, David L</au><au>Lannutti, John J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemotherapeutic implants via subcritical CO2 modification</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2007-12-01</date><risdate>2007</risdate><volume>28</volume><issue>36</issue><spage>5562</spage><epage>5569</epage><pages>5562-5569</pages><issn>0142-9612</issn><abstract>Abstract Polymer-based biomaterials have a broad range of current applications in medicine. Many implants generate a favorable biomedical outcome solely by providing short-term mechanical stability that allows healing of the surrounding tissues. An example is polymeric reconstructive resorbable plates having initial strengths sufficient to stabilize bone segments while allowing the osteosynthesis needed to restore original function following tumor resection. Simultaneous, localized delivery of the widely employed chemotherapeutic paclitaxel following tumor removal presents a particularly desirable goal in this context. By using compressed/subcritical CO2 at moderate pressures (as opposed to the more familiar supercritical pressures) to embed paclitaxel in clinically utilized reconstructive plating, the form of the implant can be preserved while adding an inherently localized chemotherapeutic function. In vitro tests demonstrate the efficacy of the embedded paclitaxel against adherent MCF-7 breast cancer cells within the immediate area of the polylactic acid (PLA). CO2 can be utilized to add dual structural-chemotherapeutic function to polymeric surfaces without a change in form. The ability to ‘piggyback’ chemotherapeutic function into nearly any polymeric surface should find widespread utility.</abstract><cop>Netherlands</cop><pmid>17888509</pmid><doi>10.1016/j.biomaterials.2007.09.004</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2007-12, Vol.28 (36), p.5562-5569
issn 0142-9612
language eng
recordid cdi_proquest_miscellaneous_68435563
source ScienceDirect Journals
subjects Advanced Basic Science
Apoptosis
Carbon Dioxide - chemistry
Cell Line, Tumor
Dentistry
Humans
Microscopy, Electron, Scanning
Prostheses and Implants
title Chemotherapeutic implants via subcritical CO2 modification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemotherapeutic%20implants%20via%20subcritical%20CO2%20modification&rft.jtitle=Biomaterials&rft.au=Powell,%20Heather%20M&rft.date=2007-12-01&rft.volume=28&rft.issue=36&rft.spage=5562&rft.epage=5569&rft.pages=5562-5569&rft.issn=0142-9612&rft_id=info:doi/10.1016/j.biomaterials.2007.09.004&rft_dat=%3Cproquest_cross%3E30936674%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-6264339aa3e8b11426e8cc7ce879edce6b3cbad16e1fae5565aa18398c2150073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=30936674&rft_id=info:pmid/17888509&rfr_iscdi=true