Loading…

A QTL affecting daily feed intake maps to Chromosome 2 in pigs

Our understanding of the molecular genetic basis of several key performance traits in pigs has been significantly advanced through the quantitative trait loci (QTL) mapping approach. However, in contrast to growth and fatness traits, the genetic basis of feed intake traits has rarely been investigat...

Full description

Saved in:
Bibliographic Details
Published in:Mammalian genome 2005-06, Vol.16 (6), p.464-470
Main Authors: Houston, Ross D, Haley, Chris S, Archibald, Alan L, Rance, Kellie A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Our understanding of the molecular genetic basis of several key performance traits in pigs has been significantly advanced through the quantitative trait loci (QTL) mapping approach. However, in contrast to growth and fatness traits, the genetic basis of feed intake traits has rarely been investigated through QTL mapping. Since feed intake is an important component of efficient pig production, the identification of QTL affecting feed intake may lead to the identification of genetic markers that can be used in selection programs. In this study a QTL analysis for feed intake, feeding behavior, and growth traits was performed in an F2 population derived from a cross between Chinese Meishan and European Large White pigs. A QTL with a significant effect on daily feed intake (DFI) was identified on Sus scrofa Chromosome 2 (SSC2). A number of suggestive QTL with effects on daily gain, feed conversion, and feeding behavior traits were also located. The significant QTL lies close to a previously identified mutation in the insulin-like growth factor 2 gene (IGF2) that affects carcass composition traits, although the IGF2 mutation is not segregating in the populations analyzed in the current study. Therefore, a distinct causal variant may exist on the P arm of SSC2 with an effect on feed intake.
ISSN:0938-8990
1432-1777
DOI:10.1007/s00335-004-4026-0