Loading…

Evolutionary aspects of pattern formation during clitellate muscle development

As a taxon of the lophotrochozoans, annelids have re-entered scientific investigations focusing on plesiomorphic bilaterian features and the evolutionary changes therein. The view of a clitellate-like plesiomorphic muscle arrangement in annelids has been challenged by recent investigations of polych...

Full description

Saved in:
Bibliographic Details
Published in:Evolution & development 2007-11, Vol.9 (6), p.602-617
Main Authors: Bergter, Annette, Hunnekuhl, Vera S, Schniederjans, Monika, Paululat, Achim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a taxon of the lophotrochozoans, annelids have re-entered scientific investigations focusing on plesiomorphic bilaterian features and the evolutionary changes therein. The view of a clitellate-like plesiomorphic muscle arrangement in annelids has been challenged by recent investigations of polychaete muscle organization. However, there are few investigations of muscle formation in clitellate species that address this problem. Direct comparison of potential homologous muscles between these annelid groups is thus hampered. Somatic muscle formation during embryogenesis of two clitellates--the oligochaete Limnodrilus sp. and the hirudinean Erpobdella octoculata--occurs by distinct processes in each species, even though they share a closed outer layer of circular and an inner layer of longitudinal muscles characteristic of clitellates. In E. octoculata, the first emerging longitudinal muscles are distributed irregularly on the body surface of the embryo whereas the circular muscles appear in an orderly repetitive pattern along the anterioposterior axis. Both primary muscle types consist of fiber-bundles that branch at both their ends. This way the circular muscle bundles divide into a fine muscle-grid. The primary longitudinal muscles are incorporated into a second type of longitudinal muscles, the latter starting to differentiate adjacent to the ventral nerve cord. Those secondary muscles emerge in a ventral to dorsal manner, enclosing the embryo of E. octoculata. In Limnodrilus sp., one dorsal and one ventral bilateral pair of primary longitudinal muscles are established initially, elongating toward posterior. Initial circular muscles are emerging in a segmental pattern. Both muscle layers are completed later in development by the addition of secondary longitudinal and circular muscles. Some features of embryonic longitudinal muscle patterns in Limnodrilus sp. are comparable to structures found in adult polychaete muscle systems. Our findings show that comparative studies of body-wall muscle formation during clitellate embryogenesis are a promising approach to gain further information on annelid muscle arrangements.
ISSN:1520-541X
1525-142X
DOI:10.1111/j.1525-142X.2007.00184.x